Skip to main content

Advertisement

Log in

Aquaporin 3 Expression in Human Fetal Membranes and its Up-regulation by Cyclic Adenosine Monophosphate in Amnion Epithelial Cel Culture

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

The cell membrane water channel protein aquaporins (AQPs) may be important in regulating the intramembranous (IM) pathway of amnio tic fluid (AF) resorption. The objective of the present study was to determine whether aquaporin 3 (AQP3) is expressed in human fetal membranes and to further determine if A QP3 expression in primary human amnion cell culture is regulated by second-messenger cyclic adenosine monophosphate (cAMP)

Methods

AQP3 expression in human fetal membranes of normal term pregnancy was studied by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). To determine the effect of cAMP on AQP3 expression, primary human amnion cell cultures were treated in either heat-inactivated medium alone (control), or heat-inactivated medium containing: (1) SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP agonist, or (2) forskolin, an adenylate cyclase stimulator. Total RNA was isolated and multiplex real-time RT-PCR employed for relative quantitation of A QP3 expression.

Results

We detected AQP3 expression in placenta, chorion, and amnion using RT-PCR. Using IHC, we identified AQP3 protein expression in placenta syncytio trop hob las ts and cytotrophoblasts, chorion cytotrophoblasts, and amnion epithelia. In primary amnion epithelial cell culture, AQP3 mRNA signifi-cantly increased at 2 hours following forskolin or SP-cAMP, remained elevated at 10 hours following forskolin, and returned to baseline levels by 20 hours following treatment.

Conclusion

This study provides evidence of AQP3 expression in human fetal membranes and demonstrates that AQP3 expression in primary human amnion cell culture is up-regulated by second- messenger cAMP. As AQP3 is permeable to water, urea, and glycerol, modulation of its expression in fetal membranes may contribute to AF homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knepper MA, Wade JB, Terris J, et al. Renal aquaporins. Kidney Int 1996;49:1712–7.

    Article  CAS  Google Scholar 

  2. Ishibashi K, Sasaki S, Fushimi K, et al. Molecular cloning and expression of a member of the aquaporin family with permeability ot glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 1994;91:6269–73.

    Article  CAS  Google Scholar 

  3. Hamann S, Zeuthen T, La Cour M, et al. Aquaporins in complex tissues: Distribution of aquaporins 1-5 in human and rat eye. Am J Physiol 1998;274:C1332–45.

    Article  CAS  Google Scholar 

  4. Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: Not just fetal urine anymore. J Perinatol 2005;25:341–8.

    Article  Google Scholar 

  5. Hardy MA, Leonardi RT, Scheide JI. Cellular permeation pathways in a leaky epithelium: The human amniochorion. Biol Cell 1989;66:149–53.

    Article  CAS  Google Scholar 

  6. Brace RA, Vermin ML, Huijssoon E. Regulation of amniotic fluid volume: Intramembranous solute and volume fluxes in late gestation fetal sheep. Am J Obstet Gynecol 2004;191:837–46.

    Article  Google Scholar 

  7. Gilbert WM, Brace RA. The missing link in amniotic fluid volume regulation: Intramembranous absorption. Obstet Gynecol 1989;74:748–54.

    CAS  Google Scholar 

  8. Lingwood B, Wintour EM. Amniotic fluid volume and in vivo permeability of ovine fetal membranes. Obstet Gynecol 1984;64:368–72.

    CAS  PubMed  Google Scholar 

  9. Gilbert WM, Newman PS, Eby-Wilkens E, Brace RA. Technetium Tc 99m rapidly crosses the ovine placenta and intramembranous pathway. Am J Obstet Gynecol 1996;175:1557–62.

    Article  CAS  Google Scholar 

  10. Matsuzaki T, Suzuki T, Takata K. Hypertonicity-induced expression of aquaporin 3 in MDCK cells. Am J Physiol Cell Physiol 2001;281:C55–63.

    Article  CAS  Google Scholar 

  11. Li C, Wang W, Kwon TH, et al. Downregulation of AQP1, -2, and -3 after ureteral obstruction is associated with a long-term urine-concentrating defect. Am J Physiol Renal Physiol 2001;281:F163–71.

    Article  CAS  Google Scholar 

  12. Itoh A, Tsujikawa T, Fujiyama Y, Bamba T. Enhancement of aquaporin-3 by vasoactive intestinal polypeptide in a human colonic epithelial cell line. J Gastroenterol Hepatol 2003;18:203–10.

    Article  CAS  Google Scholar 

  13. Johnston H, Koukoulas I, Jeyaseelan K, et al. Ontogeny of aquaporins 1 and 3 in ovine placenta and fetal membranes. Placenta 2000;21:88–99.

    Article  CAS  Google Scholar 

  14. Wlodek ME, Challis JRG, Patrick J. Urethral and urachal urine output to the amniotic and allantoic sacs in fetal sheep. J Dev Physiol 1988;10:309–19.

    CAS  PubMed  Google Scholar 

  15. Harding R, Bocking AD, Sigger JN, Wickham PJ. Composition and volume of fluid swallowed by fetal sheep. Q J Exp Physiol 1984;69:487–95.

    Article  CAS  Google Scholar 

  16. Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992;256:385–7.

    Article  CAS  Google Scholar 

  17. Wang S, Kallichanda N, Song W, Ramierez B, Ross MG. Expression of aquaporin 8 in human placenta and chorioamniotic membranes: Evidence of molecular mechanism for intramembranous amniotic fluid resorption. Am J Obstet Gynecol 2001;185:1226–31.

    Article  CAS  Google Scholar 

  18. Wang S, Chen J, Beall M, Zhou W, Ross MG. Expression of aquaporin 9 in human chorioamniotic membranes and placenta. Am J Obstet Gynecol 2004;191:2160–7.

    Article  CAS  Google Scholar 

  19. Mann SE, Ricke EA, Yang BA, Verkman AS, Taylor RN. Expression and localization of aquaporin 1 and 3 in human fetal membranes. Am J Obstet Gynecol 2002;187:902–7.

    Article  CAS  Google Scholar 

  20. Wang S, Chen J, Au KT, Ross MG. Expression of aquaporin 8 and its up-regulation by cyclic adenosine monophosphate in human WISH cells. Am J Obstet Gynecol 2003;188:997–1001.

    Article  CAS  Google Scholar 

  21. Ross MG, Wang S. Wishing the WISH cells were pure. Am J Obstet Gynecol 2003;189:1807–8.

    Article  Google Scholar 

  22. Lee DW, Markoff E. Synthesis and release of glycosylated prolactin by human decidua in vitro. J Clin Endocrinol Metab 1986;62:990–4.

    Article  CAS  Google Scholar 

  23. Maaskant RA, Bogic LV, Gilger S, Kelly PA, Bryant-Greenwood GD. The human prolactin receptor in the fetal membranes, decidua, and placenta. J Clin Endocrinol Metab 1996;81:396–405.

    CAS  PubMed  Google Scholar 

  24. Bakker-Teunissen OJ, Arts NF, Mulder GH. Fluid transport across human fetal membranes affected by human amniotic fluid prolactin: An in vitro study. Placenta 1988;9:533–45.

    Article  Google Scholar 

  25. Vizsolyi E, Perks AM. The effect of arginine vasotocin on the isolated amniotic membrane of the guinea pig. Can J Zoology 1974;52:371–86.

    Article  CAS  Google Scholar 

  26. Benedetto MT, De Cicco F, Rossiello F, Nicosia AL, Lupi G, Dell’Acqua S. Oxytocin receptor in human fetal membranes at term and during labor. J Steroid Biochem 1990;35:205–8.

    Article  CAS  Google Scholar 

  27. Phillippe M, Ryan KJ. Catecholamines in human amniotic fluid. Am J Obstet Gynecol 1981;139:204–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengbiao Wang MD.

Additional information

Supported by National Institutes of Health Grants No. HL 40899, HD 044482, RR 00425, and the March of Dimes Birth Defect Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Amidi, F., Beall, M. et al. Aquaporin 3 Expression in Human Fetal Membranes and its Up-regulation by Cyclic Adenosine Monophosphate in Amnion Epithelial Cel Culture. Reprod. Sci. 13, 181–185 (2006). https://doi.org/10.1016/j.jsgi.2006.02.002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2006.02.002

Key words

Navigation