Skip to main content

Aquaporins in Fetal Development

  • Chapter
  • First Online:
Aquaporins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1398))

Abstract

Water homeostasis is essential for fetal growth, and it depends on the successful development of the placenta. Many aquaporins (AQPs) were identified from blastocyst stages to term placenta. In the last years, cytokines, hormones, second messengers, intracellular pH, and membrane proteins were found to regulate their expression and function in the human placenta and fetal membranes. Accumulated data suggest that these proteins may be involved not only in the maintenance of the amniotic fluid volume homeostasis but also in the development of the placenta and fetal organs. In this sense, dysregulation of placental AQPs is associated with gestational disorders. Thus, current evidence shows that AQPs may collaborate in cellular events including trophoblast migration and apoptosis. In addition, aquaglyceroporins are involved in energy metabolism as well as urea elimination across the placenta. In the last year, the presence of AQP9 in trophoblast mitochondria opened new hypotheses about its role in pregnancy. However, much further work is needed to understand the importance of these proteins in human pregnancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martínez N, Damiano AE (2017) Aquaporins in fetal development. In: Advances in experimental medicine and biology. Springer, New York LLC, pp 199–212

    Google Scholar 

  2. Damiano AE (2020) Aquaporins during pregnancy. In: Vitamins and hormones, pp 327–355

    Google Scholar 

  3. Štulc J (1997) Placental transfer of inorganic ions and water. Physiol Rev 77:805–836

    Article  PubMed  Google Scholar 

  4. Jansson T, Illsley NP (1993) Osmotic water permeabilities of human placental microvillous and basal membranes. J Membr Biol 132:147–155

    Article  CAS  PubMed  Google Scholar 

  5. Jansson T, Powell TL, Illsley NP (1999) Gestational development of water and non-electrolyte permeability of human syncytiotrophoblast plasma membranes. Placenta 20:155–160

    Article  CAS  PubMed  Google Scholar 

  6. Damiano A, Zotta E, Goldstein J et al (2001) Water channel proteins AQP3 and AQP9 are present in syncytiotrophoblast of human term placenta. Placenta 22:776–781

    Article  CAS  PubMed  Google Scholar 

  7. Damiano AE, Zotta E, Ibarra C (2006) Functional and molecular expression of AQP9 channel and UT-A transporter in normal and preeclamptic human placentas. Placenta 27:1073–1081

    Article  CAS  PubMed  Google Scholar 

  8. Noda Y, Sasaki S (2008) Actin-binding channels. Prog Brain Res 170:551–557

    Article  CAS  PubMed  Google Scholar 

  9. Edwards D, Jones CJP, Sibley CP, Nelson DM (1993) Paracellular permeability pathways in the human placenta: a quantitative and morphological study of maternal-fetal transfer of horseradish peroxidase. Placenta 14:63–73

    Article  CAS  PubMed  Google Scholar 

  10. Watson AJ, Natale DR, Barcroft LC (2004) Molecular regulation of blastocyst formation. Anim Reprod Sci 82–83:583–592

    Article  PubMed  Google Scholar 

  11. Watson AJ, Barcroft LC (2001) Regulation of blastocyst formation. Front Biosci 6:D708–D730

    Article  CAS  PubMed  Google Scholar 

  12. Barcroft LC, Offenberg H, Thomsen P, Watson AJ (2003) Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev Biol 256:342–354

    Article  CAS  PubMed  Google Scholar 

  13. Xiong Y, Tan YJ, Xiong YM et al (2013) Expression of aquaporins in human embryos and potential role of AQP3 and AQP7 in preimplantation mouse embryo development. Cell Physiol Biochem 31:649–658

    Article  CAS  PubMed  Google Scholar 

  14. Chang CW, Wakeland AK, Parast MM (2018) Trophoblast lineage specification, differentiation and their regulation by oxygen tension. J Endocrinol 236:R43–R56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horii M, Touma O, Bui T, Parast MM (2020) Modeling human trophoblast, the placental epithelium at the maternal fetal interface. Reproduction 160:R1–R11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Escobar J, Gormaz M, Arduini A et al (2012) Expression of aquaporins early in human pregnancy. Early Hum Dev 88:589–594

    Article  CAS  PubMed  Google Scholar 

  17. Prat C, Blanchon L, Borel V et al (2012) Ontogeny of aquaporins in human fetal membranes. Biol Reprod 86:48. https://doi.org/10.1095/biolreprod.111.095448

    Article  CAS  PubMed  Google Scholar 

  18. De Falco M, Cobellis L, Torella M et al (2007) Down-regulation of aquaporin 4 in human placenta throughout pregnancy. In Vivo (Brooklyn) 21:813–818

    Google Scholar 

  19. Saadoun S, Waters P, Leite MI et al (2013) Neuromyelitis optica IgG causes placental inflammation and fetal death. J Immunol 191:2999–3005

    Article  CAS  PubMed  Google Scholar 

  20. Park J-W, Cheon Y-P (2015) Temporal aquaporin 11 expression and localization during preimplantation embryo development. Dev Reprod 19:53–60

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bednar AD, Beardall MK, Brace RA, Cheung CY (2015) Differential expression and regional distribution of aquaporins in amnion of normal and gestational diabetic pregnancies. Physiol Rep 3:e12320

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang S, Kallichanda N, Song W et al (2001) Expression of aquaporin-8 in human placenta and chorioamniotic membranes: evidence of molecular mechanism for intramembranous amniotic fluid resorption. Am J Obstet Gynecol 185:1226–1231

    Article  CAS  PubMed  Google Scholar 

  23. Mann SE, Ricke EA, Yang BA et al (2002) Expression and localization of aquaporin 1 and 3 in human fetal membranes. Am J Obstet Gynecol 187:902–907

    Article  CAS  PubMed  Google Scholar 

  24. Wang S, Chen J, Beall M et al (2004) Expression of aquaporin 9 in human chorioamniotic membranes and placenta. Am J Obstet Gynecol 191:2160–2167

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Lin L, Lai A (2018) Expression and significance of aquaporin-2 and serum hormones in placenta of patients with preeclampsia. J Obstet Gynaecol (Lahore) 38:42–48

    Article  CAS  Google Scholar 

  26. Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36:1–14

    Article  CAS  PubMed  Google Scholar 

  27. Liu H, Wintour EM (2005) Aquaporins in development - a review. Reprod. Biol. Endocrinol 3:18

    Article  PubMed  PubMed Central  Google Scholar 

  28. Azad AK, Raihan T, Ahmed J et al (2021) Human aquaporins: functional diversity and potential roles in infectious and non-infectious diseases. Front. Genet 12:654865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xing L, Wen JG, Frøkiær J et al (2014) Ontogeny of the mammalian kidney: expression of aquaporins 1, 2, 3, and 4. World J Pediatr 10:306–312

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto T, Sasaki S, Fushimi K et al (1997) Expression of AQP family in rat kidneys during development and maturation. Am J Physiol - Ren Physiol 272:F198–F204

    Article  CAS  Google Scholar 

  31. Kim YH, Earm JH, Ma T et al (2001) Aquaporin-4 expression in adult and developing mouse and rat kidney. J Am Soc Nephrol 12:1795–1804

    Article  CAS  PubMed  Google Scholar 

  32. Bo SL, Tian H, Yan LJ et al (2016) Expression of AQP-1 in the developing renal tubules of mice. J Xi’an Jiaotong Univ (Medical Sci) 37:59–62

    CAS  Google Scholar 

  33. Xing L, Nørregaard R (2016) Influence of sex on aquaporin 1-4 and vasopressin V2 receptor expression in the pig kidney during development. Pediatr Res 80:452–459

    Article  PubMed  Google Scholar 

  34. Butkus A, Earnest L, Jeyaseelan K et al (1999) Ovine aquaporin-2: CDNA cloning, ontogeny and control of renal gene expression. Pediatr Nephrol 13:379–390

    Article  CAS  PubMed  Google Scholar 

  35. Butkus A, Alcorn D, Earnest L et al (1997) Expression of aquaporin-1 (AQP1) in the adult and developing sheep kidney. Biol Cell 89:313–320

    CAS  PubMed  Google Scholar 

  36. Feng J, Yan S, Chen Y et al (2019) Aquaporin1–3 expression in normal and hydronephrotic kidneys in the human fetus. Pediatr Res 86:595–602

    Article  CAS  PubMed  Google Scholar 

  37. Ráduly G, Pap Z, Dénes L et al (2019) The immunoexpression of aquaporin 1, PAX2, PAX8, connexin 36, connexin 43 in human fetal kidney. Romanian J Morphol Embryol 60:437–444

    Google Scholar 

  38. Devuyst O, Burrow CR, Smith BL et al (1996) Expression of aquaporins-1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease. Am J Phys 271:F169–F183

    CAS  Google Scholar 

  39. Baum MA, Ruddy MK, Hosselet CA, Harris HW (1998) The perinatal expression of aquaporin-2 and aquaporin-3 in developing kidney. Pediatr Res 43:783–790

    Article  CAS  PubMed  Google Scholar 

  40. Rubenwolf PC, Georgopoulos NT, Clements LA et al (2009) Expression and localisation of aquaporin water channels in human urothelium in situ and in vitro. Eur Urol 56:1013–1024

    Article  CAS  PubMed  Google Scholar 

  41. Jakobsen LK, Trelborg KF, Kingo PS et al (2018) Aquaporin expression in the fetal porcine urinary tract changes during gestation. Physiol Res 67:283–292

    Article  CAS  PubMed  Google Scholar 

  42. King LS, Nielsen S, Agre P (1997) Aquaporins in complex tissues. I. Developmental patterns in respiratory and glandular tissues of rat. Am J Physiol Cell Physiol 273:C1541–C1548

    Article  CAS  Google Scholar 

  43. Yasui M, Serlachius E, Löfgren M et al (1997) Perinatal changes in expression of aquaporin-4 and other water and ion transporters in rat lung. J Physiol 505:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu C, Morrisey EE, Whitsett JA (2002) GATA-6 is required for maturation of the lung in late gestation. Am J Physiol Lung Cell Mol Physiol 283:L468–L475

    Article  CAS  PubMed  Google Scholar 

  45. Liu H, Hooper SB, Armugan A et al (2003) Aquaporin gene expression and regulation in the ovine fetal lung. J Physiol 551:503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ågren J, Zelenin S, Håkansson M et al (2003) Transepidermal water loss in developing rats: role of aquaporins in the immature skin. Pediatr Res 53:558–565

    Article  PubMed  Google Scholar 

  47. Jonker SS, Davis LE, van der Bilt JDW et al (2003) Anaemia stimulates aquaporin 1 expression in the fetal sheep heart. Exp Physiol 88:691–698

    Article  CAS  PubMed  Google Scholar 

  48. Tan G, Sun SQ, Yuan DL (2008) Expression of the water channel protein aquaporin-9 in human astrocytic tumours: correlation with pathological grade. J Int Med Res 36:777–782

    Article  CAS  PubMed  Google Scholar 

  49. Nico B, Frigeri A, Nicchia GP et al (2001) Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J Cell Sci 114:1297–1307

    Article  CAS  PubMed  Google Scholar 

  50. Wen H (1999) Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur J Neurosci 11:935–945

    Article  CAS  PubMed  Google Scholar 

  51. Fallier-Becker P, Vollmer JP, Bauer HC et al (2014) Onset of aquaporin-4 expression in the developing mouse brain. Int J Dev Neurosci 36:81–89

    Article  CAS  PubMed  Google Scholar 

  52. Gömöri É, Pál J, Ábrahám H et al (2006) Fetal development of membrane water channel proteins aquaporin-1 and aquaporin-4 in the human brain. Int J Dev Neurosci 24:295–305

    Article  PubMed  Google Scholar 

  53. Baum M, Quigley R, Satlin L (2003) Maturational changes in renal tubular transport. Curr Opin Nephrol Hypertens 12:521–526

    Article  PubMed  Google Scholar 

  54. Hua Y, Ying X, Qian Y et al (2019) Physiological and pathological impact of AQP1 knockout in mice. Biosci. Rep 39:BSR20182303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rützler M, Rojek A, Damgaard MV et al (2017) Temporal deletion of Aqp11 in mice is linked to the severity of cyst-like disease. Am J Physiol Ren Physiol 312:F343–F351

    Article  Google Scholar 

  56. Yasui M, Makples D, Belusa R et al (1996) Development of urinary concentrating capacity: role of aquaporin-2. Am J Phys 271:F461–F468

    CAS  Google Scholar 

  57. Brace RA (1997) Physiology of amniotic fluid volume regulation. Clin Obstet Gynecol 40:280–289

    Article  CAS  PubMed  Google Scholar 

  58. Gillibrand PN (1969) Changes in the electrolytes, urea and osmolality of the amniotic fluid with advancing pregnancy. BJOG An Int J Obstet Gynaecol 76:898–905

    Article  CAS  Google Scholar 

  59. Mann SE, Nijland MJM, Ross MG (1996) Mathematic modeling of human amniotic fluid dynamics. Am J Obstet Gynecol 175:937–944

    Article  CAS  PubMed  Google Scholar 

  60. Brace RA, Cheung CY, Anderson DF (2018) Regulation of amniotic fluid volume: insights derived from amniotic fluid volume function curves. Am J Physiol - Regul Integr Comp Physiol 315:R777–R789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brace RA, Cheung CY (2014) Regulation of amniotic fluid volume: evolving concepts. Adv Exp Med Biol 814:49–68

    Article  PubMed  Google Scholar 

  62. Damiano AE (2011) Review: water channel proteins in the human placenta and fetal membranes. Placenta 32(Suppl 2):S207–S211

    Article  PubMed  Google Scholar 

  63. Di Paola M, Sierra MN, Fernández N et al (2022) Contribution of aquaporins in the transamniotic water flux. Biochem Biophys Res Commun 590:63–67

    Article  PubMed  Google Scholar 

  64. Mann SE, Dvorak N, Gilbert H, Taylor RN (2006) Steady-state levels of aquaporin 1 mRNA expression are increased in idiopathic polyhydramnios. Am J Obstet Gynecol 194:884–887

    Article  CAS  PubMed  Google Scholar 

  65. Zhu X, Jiang S, Hu Y et al (2010) The expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta in term pregnancies complicated by idiopathic polyhydramnios. Early Hum Dev 86:657–663

    Article  CAS  PubMed  Google Scholar 

  66. Zhu XQ, Jiang SS, Zhu XJ et al (2009) Expression of aquaporin 1 and aquaporin 3 in fetal membranes and placenta in human term pregnancies with oligohydramnios. Placenta 30:670–676

    Article  CAS  PubMed  Google Scholar 

  67. Jiang SS, Zhu XJ, Di DS et al (2012) Expression and localization of aquaporins 8 and 9 in term placenta with oligohydramnios. Reprod Sci 19:1276–1284

    Article  CAS  PubMed  Google Scholar 

  68. Mann SE, Ricke EA, Torres EA et al (2005) A novel model of polyhydramnios: amniotic fluid volume is increased in aquaporin 1 knockout mice. Am J Obstet Gynecol 192(6):2041–2044

    Article  PubMed  Google Scholar 

  69. Sha XY, Xiong ZF, Liu HS et al (2011) Pregnant phenotype in aquaporin 8-deficient mice. Acta Pharmacol Sin 32(6):840–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seo MJ, Lim JH, Kim D-H, Bae H-R (2018) Loss of aquaporin-3 in placenta and fetal membranes induces growth restriction in mice. Dev Reprod 22:263–273

    Article  PubMed  PubMed Central  Google Scholar 

  71. Luo H, Xie A, Hua Y et al (2018) Aquaporin 1 gene deletion affects the amniotic fluid volume and composition as well as the expression of other aquaporin water channels in placenta and fetal membranes. Clin Chim Acta 482:161–165

    Article  CAS  PubMed  Google Scholar 

  72. Szpilbarg N, Seyahian A, Di Paola M et al (2018) Oxygen regulation of aquaporin-4 in human placenta. Reprod Biomed Online 37:601–612

    Article  CAS  PubMed  Google Scholar 

  73. Szpilbarg N, Damiano AE (2017) Expression of aquaporin-3 (AQP3) in placentas from pregnancies complicated by preeclampsia. Placenta 59:57–60

    Article  CAS  PubMed  Google Scholar 

  74. Vilariño-García T, Pérez-Pérez A, Dietrich V et al (2016) Increased expression of aquaporin 9 in trophoblast from gestational diabetic patients. Horm Metab Res 48:535–539

    Article  PubMed  Google Scholar 

  75. Szpilbarg N, Martïnez NA, Di Paola M et al (2018) New insights into the role of placental aquaporins and the pathogenesis of preeclampsia. Front Physiol 9:1507

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tsukaguchi H, Shayakul C, Berger UV et al (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273:24737–24743

    Article  CAS  PubMed  Google Scholar 

  77. Castro Parodi M, Farina M, Dietrich V et al (2011) Evidence for insulin-mediated control of AQP9 expression in human placenta. Placenta 32:1050–1056

    Article  CAS  PubMed  Google Scholar 

  78. Castro-Parodi M, Szpilbarg N, Dietrich V et al (2013) Oxygen tension modulates AQP9 expression in human placenta. Placenta 34:690–698

    Article  CAS  PubMed  Google Scholar 

  79. Medina Y, Acosta L, Reppetti J et al (2021) Lactic acid transport mediated by aquaporin-9: implications on the pathophysiology of preeclampsia. Front Physiol 12:774095

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fisher JJ, Bartho LA, Perkins AV, Holland OJ (2020) Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin Exp Pharmacol Physiol 47:176–184

    Article  CAS  PubMed  Google Scholar 

  81. Can M, Guven B, Bektas S, Arikan I (2014) Oxidative stress and apoptosis in preeclampsia. Tissue Cell 46:477–481

    Article  CAS  PubMed  Google Scholar 

  82. Marín R, Chiarello DI, Abad C et al (2020) Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol basis Dis 1866:165961

    Article  PubMed  Google Scholar 

  83. Webster RP, Roberts VHJ, Myatt L (2008) Protein nitration in placenta - functional significance. Placenta 29:985–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Medina Y, Di Paola M, Anud C et al (2019) Nitration of placenta aquaporins affects the survival of villous trophoblast cells. Placenta 83:e57–e58

    Article  Google Scholar 

  85. Lüscher BP, Marini C, Joerger-Messerli MS et al (2017) Placental glucose transporter (GLUT)-1 is down-regulated in preeclampsia. Placenta 55:94–99

    Article  PubMed  Google Scholar 

  86. El-Bacha T, Ahmed-Salim Y, Murray AJ et al (2019) Placentas are energetically compromised in early-onset pre-eclampsia and present alterations in one-carbon metabolism. Reprod Sci 26:172A

    Google Scholar 

  87. Ginsburg J, Jeacock MK (1967) Placental lactate production in toxemia of pregnancy. Am J Obstet Gynecol 98:239–244

    Article  CAS  PubMed  Google Scholar 

  88. Kay HH, Zhu S, Tsoi S (2007) Hypoxia and lactate production in trophoblast cells. Placenta 28:854–860

    Article  CAS  PubMed  Google Scholar 

  89. Peguero A, Parra RA, Carrillo SP et al (2019) Association of plasma lactate concentration at admission of severe preeclampsia to maternal complications. Pregnancy Hypertens 17:89–93

    Article  PubMed  Google Scholar 

  90. Pérez-Pérez A, Vilariño-García T, Dietrich V et al (2020) Aquaporins and placenta. In: Vitamins and hormones. Academic Press Inc., pp 311–326

    Google Scholar 

  91. Reca A, Szpilbarg N, Damiano AE (2018) The blocking of aquaporin-3 (AQP3) impairs extravillous trophoblast cell migration. Biochem Biophys Res Commun 499:227–232

    Article  CAS  Google Scholar 

  92. Reppetti J, Reca A, Seyahian EA et al (2020) Intact caveolae are required for proper extravillous trophoblast migration and differentiation. J Cell Physiol 235:3382–3392

    Article  CAS  PubMed  Google Scholar 

  93. Nong Y, Li S, Liu W et al (2021) Aquaporin 3 promotes human extravillous trophoblast migration and invasion. Reprod Biol Endocrinol 19:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. dos Passos Junior RR, de Freitas RA, Reppetti J et al (2021) High levels of tumor necrosis factor-alpha reduce placental aquaporin 3 expression and impair in vitro trophoblastic cell migration. Front Physiol 12:1–10

    Google Scholar 

  95. Jablonski E, Webb A, Hughes FM (2005) Water movement during apoptosis: a role for aquaporins in the apoptotic volume decrease (AVD). Adv Exp Med Biol 559:179–188

    Article  Google Scholar 

  96. Jablonski EM, Webb AN, McConnell NA et al (2004) Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease. Am J Physiol Cell Physiol 286:C975–C985

    Article  CAS  PubMed  Google Scholar 

  97. Szpilbarg N, Castro-Parodi M, Reppetti J et al (2016) Placental programmed cell death: insights into the role of aquaporins. Mol Hum Reprod 22:46–56

    Article  CAS  PubMed  Google Scholar 

  98. Sharp AN, Heazell AEP, Crocker IP, Mor G (2010) Placental apoptosis in health and disease. Am J Reprod Immunol 64:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. He D, Zhang A, Li Y et al (2017) Autoimmune aquaporin-4 induced damage beyond the central nervous system. Mult Scler Relat Disord 18:41–46

    Article  PubMed  Google Scholar 

  100. Deng S, Qiu K, Tu R et al (2021) Relationship between pregnancy and acute disseminated encephalomyelitis: a single-case study. Front Immunol 11:609476

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ishibashi K, Tanaka Y, Morishita Y (2021) The role of mammalian superaquaporins inside the cell: an update. Biochim Biophys Acta Biomembr 1863:183617

    Article  CAS  PubMed  Google Scholar 

  102. Yakata K, Tani K, Fujiyoshi Y (2011) Water permeability and characterization of aquaporin-11. J Struct Biol 174:315–320

    Article  CAS  PubMed  Google Scholar 

  103. Ishibashi K, Koike S, Kondo S et al (2009) The role of a group III AQP, AQP11 in intracellular organelle homeostasis. J Med Investig 56:312–317

    Article  Google Scholar 

  104. Bestetti S, Galli M, Sorrentino I et al (2020) Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane. Redox Biol 28:101326

    Article  CAS  PubMed  Google Scholar 

  105. Wang S, Chen J, Au KT, Ross MG (2003) Expression of aquaporin 8 and its up-regulation by cyclic adenosine monophosphate in human WISH cells. Am J Obstet Gynecol 188:997–1001

    Article  CAS  PubMed  Google Scholar 

  106. Wang S, Amidi F, Yin S et al (2007) Cyclic adenosine monophosphate regulation of aquaporin gene expression in human amnion epithelia. Reprod Sci 14:234–240

    Article  CAS  Google Scholar 

  107. Wang S, Amidi F, Beall M et al (2006) Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture. J Soc Gynecol Investig 13:181–185

    Article  CAS  PubMed  Google Scholar 

  108. Qi H, Li L, Zong W et al (2009) Expression of aquaporin 8 is diversely regulated by osmotic stress in amnion epithelial cells. J Obstet Gynaecol Res 35:1019–1025

    Article  CAS  PubMed  Google Scholar 

  109. Bouvier D, Rouzaire M, Marceau G et al (2015) Aquaporins and fetal membranes from diabetic parturient women: expression abnormalities and regulation by insulin. J Clin Endocrinol Metab 100:E1270–E1279

    Article  CAS  PubMed  Google Scholar 

  110. Prat C, Bouvier D, Comptour A et al (2015) All-trans-retinoic acid regulates aquaporin-3 expression and related cellular membrane permeability in the human amniotic environment. Placenta 36:881–887

    Article  CAS  PubMed  Google Scholar 

  111. Marino GI, Castro-Parodi M, Dietrich V, Damiano AE (2010) High levels of human chorionic gonadotropin (hCG) correlate with increased aquaporin-9 (AQP9) expression in explants from human preeclamptic placenta. Reprod Sci 17:444–453

    Article  CAS  PubMed  Google Scholar 

  112. Belkacemi L, Beall MH, Magee TR et al (2008) AQP1 gene expression is upregulated by arginine vasopressin and cyclic AMP agonists in trophoblast cells. Life Sci 82:1272–1280

    Article  CAS  PubMed  Google Scholar 

  113. Vilariño-García T, Pérez-Pérez A, Dietrich V et al (2018) Leptin upregulates aquaporin 9 expression in human placenta in vitro. Gynecol Endocrinol 34:175–177

    Article  PubMed  Google Scholar 

  114. Castro-Parodi M, Levi L, Dietrich V et al (2009) CFTR may modulate AQP9 functionality in preeclamptic placentas. Placenta 30:642–648

    Article  CAS  PubMed  Google Scholar 

  115. Dietrich V, Damiano AE (2015) Activity of NA+/H+ exchangers alters aquaporin-mediated water transport in human placenta. Placenta 36:1487–1489

    Article  CAS  PubMed  Google Scholar 

  116. Burton GJ, Cindrova-Davies T, Yung HW, Jauniaux E (2021) Oxygen and development of the human placenta. Reproduction 161:F53–F65

    Article  CAS  PubMed  Google Scholar 

  117. Bajoria R, Ward S, Sooranna SR (2004) Influence of vasopressin in the pathogenesis of oligohydramnios- polyhydramnios in monochorionic twins. Eur J Obstet Gynecol Reprod Biol 113:49–55

    Article  CAS  PubMed  Google Scholar 

  118. Scioscia M, Gumaa K, Kunjara S et al (2006) Insulin resistance in human preeclamptic placenta is mediated by serine phosphorylation of insulin receptor substrate-1 and -2. J Clin Endocrinol Metab 91:709–717

    Article  CAS  PubMed  Google Scholar 

  119. Zeuthen T, Klaerke DA (1999) Transport of water and glycerol in aquaporin 3 is gated by H+. J Biol Chem 274:21631–21636

    Article  CAS  PubMed  Google Scholar 

  120. Carbrey JM, Gorelick-Feldman DA, Kozono D et al (2003) Aquaglyceroporin AqP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci U S A 100:2945–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Morishima T, Aoyama M, Iida Y et al (2008) Lactic acid increases aquaporin 4 expression on the cell membrane of cultured rat astrocytes. Neurosci Res 61:18–26

    Article  CAS  PubMed  Google Scholar 

  122. Dietrich V, Szpilbarg N, Damiano AE (2013) Reduced expression of Na(+)/H(+) exchanger isoform 3 (NHE-3) in preeclamptic placentas. Placenta 34:828–830

    Article  CAS  PubMed  Google Scholar 

  123. Parat MO (2009) The biology of caveolae. Achievements and perspectives. Int Rev Cell Mol Biol 273:117–192

    Article  CAS  PubMed  Google Scholar 

  124. Dart C (2010) Lipid microdomains and the regulation of ion channel function. J Physiol 588:3169–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Levi L, Castro-Parodi M, Martínez N et al (2016) The unfavorable lipid environment reduced caveolin-1 expression in apical membranes from human preeclamptic placentas. Biochim Biophys Acta Biomembr 1858:2171–2180

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia E. Damiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez, N., Damiano, A.E. (2023). Aquaporins in Fetal Development. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 1398. Springer, Singapore. https://doi.org/10.1007/978-981-19-7415-1_17

Download citation

Publish with us

Policies and ethics