Skip to main content

Advertisement

Log in

Placental Dysfunction in Suramin-Treated Rats: Impact of Maternal Diabetes and Effects of Antioxidative Treatment

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

The aim of the present study was to evaluate a rat model of placental dysfunction/ preeclampsia in pregnancies complicated by maternal diabetes. A second objective was to evaluate the effects of vitamin E treatment in this model.

Methods

Normal and streptozotocin-induced diabetic rats of two different strains (U and H) were given intraperitoneal (IP) injections of the angiogenesis inhibitor Suramin (Sigma Chemical Co, St Louis, MO) or saline in early pregnancy, and fed standard or vitamin E— enriched food. The outcome of pregnancy was evaluated on gestational day 20.

Results

In both rat strains Suramin caused fetal growth retardation, decreased placental blood flow, and increased placental concentration of the isoprostane 8-iso-PGF. In the U rats Suramin also caused increased fetal resorption rate, increased maternal blood pressure, decreased renal blood flow, and diminished maternal growth. Diabetes caused severe maternal and fetal growth retardation, increased resorption rate, and increased placental 8-iso-PGF concentration independent of Suramin administration. The maternal and fetal effects of Suramin and diabetes were more pronounced in the U strain than in the H strain. Vitamin E treatment improved the status of Suramin-injected diabetic rats: in U rats the blood pressure increase was normalized; and in both U and H rats the decreased placental blood flow was marginally enhanced, and the increase in placental 8-iso-PGF was partly normalized by vitamin E.

Conclusion

Suramin injections to pregnant rats cause a state of placental insufficiency, which in U rats resembles human preeclampsia. The induction of this condition is at least partly mediated by oxidative stress, and antagonized by antioxidative treatment. Maternal diabetes involves increased oxidative stress, and causes both maternal and fetal morbidity, which are only marginally affected by additional Suramin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chesley LC, Duffus GM. Preeclampsia, posture and renal function. Obstet Gynecol 1971;38:1–5.

    CAS  PubMed  Google Scholar 

  2. Hubel CA, Roberts JM, Taylor RN, Musci TJ, Rogers GM, McLaughlin MK. Lipid peroxidation in pregnancy: New perspectives on preeclampsia. Am J Obstet Gynecol 1989;161:1025–34.

    Article  CAS  PubMed  Google Scholar 

  3. Dekker GA, Sibai BM. Etiology and pathogenesis of preeclampsia: current concepts. Am J Obstet Gynecol 1998;179:1359–75.

    Article  CAS  PubMed  Google Scholar 

  4. Hung TH, Skepper JN, Burton GJ. In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am J Pathol 2001;159:1031–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Redman CW, Sargent IL. The pathogenesis of pre-eclampsia. Gynecol Obstet Fertil 2001;29:518–22.

    Article  CAS  PubMed  Google Scholar 

  6. Kauma SW, Wang Y, Walsh SW. Preeclampsia is associated with decreased placental interleukin-6 production. J Soc Gynecol Investig 1995;2:614–7.

    Article  CAS  PubMed  Google Scholar 

  7. Caniggia I, Winter J, Lye SJ, Post M. Oxygen and placental development during the first trimester: Implications for the pathophysiology of pre-eclampsia. Placenta 2000;21(suppl):S25–30.

    Article  PubMed  Google Scholar 

  8. Arngrimsson R, Bjornsson S, Geirsson RT, Bjornsson H, Walker JJ, Snaedal G. Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population. Br J Obstet Gynaecol 1990;97:762–9.

    Article  CAS  PubMed  Google Scholar 

  9. Yamada N, Arinami T, Yamakawa-Kobayashi K, et al. The 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene is associated with severe preeclampsia. J Hum Genet 2000;45:138–41.

    Article  CAS  PubMed  Google Scholar 

  10. Treloar SA, Cooper DW, Brennecke SP, Grehan MM, Martin NG. An Australian twin study of the genetic basis of preeclampsia and eclampsia. Am J Obstet Gynecol 2001;184:374–81.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Walsh S. Antioxidant activities and mRNA expression of superoxide dismutase, catalase, and glutathione peroxidase in normal and preeclamptic placentas. J Soc Gynecol Investig 1996;3:179–84.

    Article  CAS  PubMed  Google Scholar 

  12. Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med 1999;222:222–35.

    Article  CAS  PubMed  Google Scholar 

  13. Akyol D, Mungan T, Gorkemli H, Nuhoglu G. Maternal levels of vitamin E in normal and preeclamptic pregnancy. Arch Gynecol Obstet 2000;263:151–5.

    Article  CAS  PubMed  Google Scholar 

  14. Many A, Hubel CA, Fisher SJ, Roberts JM, Zhou Y. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am J Pathol 2000;156:321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walsh SW, Vaughan JE, Wang Y, Roberts LJ 2nd. Placental isoprostane is significantly increased in preeclampsia. FASEB J 2000;14:1289–96.

    Article  CAS  PubMed  Google Scholar 

  16. Staff AC, Ranheim T, Henriksen T, Halvorsen B. 8-Iso-prostaglandin f(2alpha) reduces trophoblast invasion and matrix metalloproteinase activity. Hypertension 2000;35:1307–13.

    Article  CAS  PubMed  Google Scholar 

  17. Raijmakers MT, Zusterzeel PL, Roes EM, Steegers EA, Mulder TP, Peters WH. Oxidized and free whole blood thiols in preeclampsia. Obstet Gynecol 2001;97:272–6.

    CAS  PubMed  Google Scholar 

  18. Takacs P, Kauma SW, Sholley MM, Walsh SW, Dinsmoor MJ, Green K. Increased circulating lipid peroxides in severe preeclampsia activate NF-kappaB and upregulate ICAM-1 in vascular endothelial cells. FASEB J 2001;15:279–81.

    Article  CAS  PubMed  Google Scholar 

  19. Chappell LC, Seed PT, Briley AL, et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: A randomized trial. Lancet 1999;354:810–6.

    Article  CAS  PubMed  Google Scholar 

  20. Chappell LC, Seed PT, Kelly FJ, et al. Vitamin C and E supplementation in women at risk of preeclampsia is associated with changes in indices of oxidative stress and placental function. Am J Obstet Gynecol 2002;187:777–84.

    Article  CAS  PubMed  Google Scholar 

  21. Combs CA, Rosenn B, Kitzmiller JL, Khoury JC, Wheeler BC, Miodovnik M. Early-pregnancy proteinuria in diabetes related to preeclampsia. Obstet Gynecol 1993;82:802–7.

    CAS  PubMed  Google Scholar 

  22. Hsu CD, Tan HY, Hong SF, Nickless NA, Copel JA. Strategies for reducing the frequency of preeclampsia in pregnancies with insulin-dependent diabetes mellitus. Am J Perinatol 1996;13:265–8.

    Article  CAS  PubMed  Google Scholar 

  23. Hanson U, Persson B. Epidemiology of pregnancy-induced hypertension and preeclampsia in type 1 (insulin-dependent) diabetic pregnancies in Sweden. Acta Obstet Gynecol Scand 1998;77:620–4.

    Article  CAS  PubMed  Google Scholar 

  24. Ros HS, Cnattingius S, Lipworth L. Comparison of risk factors for preeclampsia and gestational hypertension in a population-based cohort study. Am J Epidemiol 1998;147:1062–70.

    Article  CAS  PubMed  Google Scholar 

  25. Hiilesmaa V, Suhonen L, Teramo K. Glycaemic control is associated with pre-eclampsia but not with pregnancy-induced hypertension in women with type I diabetes mellitus. Diabetologia 2000;43:1534–9.

    Article  CAS  PubMed  Google Scholar 

  26. West IC. Radicals and oxidative stress in diabetes. Diabet Med 2000;17:171–80.

    Article  CAS  PubMed  Google Scholar 

  27. Aydin A, Orhan H, Sayal A, Ozata M, Sahin G, Isimer A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: Effects of glycemic control. Clin Biochem 2001;34:65–70.

    Article  CAS  PubMed  Google Scholar 

  28. Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 2002;288:2579–88.

    Article  CAS  PubMed  Google Scholar 

  29. Ishihara G, Hiramatsu Y, Masuyama H, Kudo T. Streptozotocin-induced diabetic pregnant rats exhibit signs and symptoms mimicking preeclampsia. Metabolism 2000;49:853–7.

    Article  CAS  PubMed  Google Scholar 

  30. Eriksson UJ, Jansson L. Diabetes in pregnancy: decreased placental blood flow and disturbed fetal development in the rat. Pediatr Res 1984;18:735–8.

    Article  CAS  PubMed  Google Scholar 

  31. Nash P, Wentzel P, Lindeberg S, et al. Placental dysfunction in Suramin-treated rats—A new model for pre-eclampsia. Placenta 2005 (in press).

    Book  Google Scholar 

  32. Eriksson UJ. Importance of genetic predisposition and maternal environment for the occurrence of congenital malformations in offspring of diabetic rats. Teratology 1988;37:365–74.

    Article  CAS  PubMed  Google Scholar 

  33. Eriksson UJ, Andersson A, Efendic S, Elde R, Hellerström C. Diabetes in pregnancy: effects on the fetal and newborn rat with particular regard to body weight, serum insulin concentration and pancreatic contents of insulin, glucagon and somatostatin. Acta Endocrinol (Copenh) 1980;94:354–64.

    Article  CAS  Google Scholar 

  34. Lowry OH, Rosebrough. NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  35. Allain CC, Poon LS, Chon CSG, Richmond U, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem 1974;20:470–5.

    Article  CAS  PubMed  Google Scholar 

  36. Bondar RJL, Mead DC. Evaluation of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides in the hexokinase method for determining glucose in serum. Clin Chem 1974;20:586–90.

    Article  CAS  PubMed  Google Scholar 

  37. Maas AH. IFCC reference methods and materials for measurement of pH, gases and electrolytes in blood. Scand J Clin Lab Invest 1993;214:83–94.

    Article  CAS  Google Scholar 

  38. Doumas BT. Standards for total serum protein assays-A collaborative study. Clin Chem 1975;21:1159–66.

    Article  CAS  PubMed  Google Scholar 

  39. Jacobs NJ, Vandemark PJ. The purification and properties of the alpha-glycerophosphate-oxidizing enzyme of Streptococcus faecalis 10C1. Arch Biochem Biophys 1960;88:250–5.

    Article  CAS  PubMed  Google Scholar 

  40. Moshage H, Kok B, Huizenga JR, Jansen PL. Nitrite and nitrate determinations in plasma: A critical evaluation. Clin Chem 1995;41:892–6.

    Article  CAS  PubMed  Google Scholar 

  41. Pradelles P, Grassi J, Maclouf J. Enzyme immunoassays of eicosanoids using acetylcholine esterase as label: An alternative to radioimmunoassay. Anal Chem 1985;57:1170–3.

    Article  CAS  PubMed  Google Scholar 

  42. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Med Sci 1959;37:911–7.

    CAS  Google Scholar 

  43. Morrow JD, Harris TM, Roberts LJ 2nd. Noncyclooxygenase oxidative formation of a series of novel prostaglandins: Analytical ramifications for measurement of eicosanoids. Anal Biochem 1990;184:1–10.

    Article  CAS  PubMed  Google Scholar 

  44. Svensson AM, Bodin B, Andersson A, Jansson L. Pancreatic islet blood flow during pregnancy in the rat: An increased islet mass is associated with decreased islet blood flow. J Endocrinol 2004;180:409–15.

    Article  CAS  PubMed  Google Scholar 

  45. Gagliardi A, Hadd H, Collins DC. Inhibition of angiogenesis by suramin. Cancer Res 1992;52:5073–5.

    CAS  PubMed  Google Scholar 

  46. Bocci G, Danesi R, Benelli U, et al. Inhibitory effect of suramin in rat models of angiogenesis in vitro and in vivo. Cancer Chemother Pharmacol 1999;43:205–12.

    Article  CAS  PubMed  Google Scholar 

  47. Zygmunt M, Herr F, Münstedt K, Lang U, Liang OD. Angiogenesis and vasculogenesis in pregnancy. Eur J Obstet Gynecol Reprod Biol 2003;110 Suppl 1: S10–8.

    Article  CAS  PubMed  Google Scholar 

  48. Bishop ET, Bell GT, Bloor S, Broom IJ, Hendry NF, Wheatley DN. An in vitro model of angiogenesis: Basic features. Angiogenesis 1999;3:335–44.

    Article  CAS  PubMed  Google Scholar 

  49. Freeman SJ, Lloyd JB. Evidence that suramin and aurothiomalate are teratogenic in rat by disturbing yolk sac-mediated embryonic protein nutrition. Chem Biol Interact 1986;58:149–60.

    Article  CAS  PubMed  Google Scholar 

  50. Lloyd JB, Beck F. Lysosomes and congenital malformations. Biochem J 1969;115:32P–4P.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee CS, Han JH, Lee SM, et al. Wax moth, Galleria mellonella fat body receptor for high-density lipophorin (HDLp). Arch Insect Biochem Physiol 2003;54:14–24.

    Article  CAS  PubMed  Google Scholar 

  52. Tannert A, Wustner D, Bechstein J, Muller P, Devaux PF, Herrmann A. Aminophospholipids have no access to the luminal side of the biliary canaliculus: Implications for the specific lipid composition of the bile fluid. J Biol Chem 2003;278:40631–9.

    Article  CAS  PubMed  Google Scholar 

  53. Eriksson UJ, Dahlstrom VE, Lithell HO. Diabetes and pregnancy: Influence of genetic background and maternal diabetic state on the incidence of skeletal malformations in the fetal rat. Acta Endocrinol (Copenh) 1986;112 Suppl 277:66–73.

    Article  Google Scholar 

  54. Eriksson UJ, Styrud J, Eriksson RSM. Diabetes in pregnancy: Genetic and temporal relationships of maldevelopment in the offspring of diabetic rats. In: Sutherland HW, Stowers JM, Pearson DWM, eds. 4th International Colloquium on Carbohydrate Metabolism in Pregnancy and the Newborn. Berlin: Springer-Verlag, 1989:51–63.

    Google Scholar 

  55. Styrud J, Thunberg L, Nybacka O, Eriksson UJ. Correlations between maternal metabolism and deranged development in the offspring of normal and diabetic rats. Pediatr Res 1995;37:343–53.

    Article  CAS  PubMed  Google Scholar 

  56. Wood SM. Assessment of renal functions in hypertensive pregnancies. Clin Obstet Gynaecol 1977;4:747–58.

    CAS  PubMed  Google Scholar 

  57. Kublickas M, Lunell NO, Nisell H, Westgren M. Maternal renal artery blood flow velocimetry in normal and hypertensive pregnancies. Acta Obstet Gynecol Scand 1996;75:715–9.

    Article  CAS  PubMed  Google Scholar 

  58. Klein T, Neuhaus K, Reutter F, Nusing RM. Generation of 8-epi-prostaglandin F(2alpha) in isolated rat kidney glomeruli by a radical-independent mechanism. Br J Pharmacol 2001;133:643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cederberg J, Basu S, Eriksson UJ. Increased rate of lipid peroxidation and protein carbonylation in experimental diabetic pregnancy. Diabetologia 2001;44:766–74.

    Article  CAS  PubMed  Google Scholar 

  60. Wentzel P, Welsh N, Eriksson UJ. Developmental damage, increased lipid peroxidation, diminished cyclooxygenase-2 gene expression, and lowered PGE2 levels in rat embryos exposed to a diabetic environment. Diabetes 1999;48:813–20.

    Article  CAS  PubMed  Google Scholar 

  61. Eriksson UJ, Borg LAH. Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia 1991;34:325–31.

    Article  CAS  PubMed  Google Scholar 

  62. Simán CM, Gittenberger-De Groot AC, Wisse B, Eriksson UJ. Malformations in offspring of diabetic rats: Morphometric analysis of neural crest-derived organs and effects of maternal vitamin E treatment. Teratology 2000;61:355–67.

    Article  PubMed  Google Scholar 

  63. Simán CM, Eriksson UJ. Vitamin E decreases the occurrence of malformations in the offspring of diabetic rats. Diabetes 1997;46:1054–61.

    Article  PubMed  Google Scholar 

  64. Cederberg J, Siman CM, Eriksson UJ. Combined treatment with vitamin E and vitamin C decreases oxidative stress and improves fetal outcome in experimental diabetic pregnancy. Pediatr Res 2001;49:755–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf J. Eriksson MD, PhD.

Additional information

Supported by the Ernfors Family Fund, Swedish Diabetes Association, Novo Nordisk Foundation, Swedish Research Council (Grants No. 12X-7475, 12X-109, 73X-08683-16A), General Maternity Hospital Foundation, Magnus Bergvall’s Foundation, and Henning and Gosta Ankarstrand’s Foundation.

The authors are grateful to Lisbeth Sagulin for practical help during the investigation, and to Dr Parri Wentzel and Dr Leif Jansson for valuable comments and substantial support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nash, P., Olovsson, M. & Eriksson, U.J. Placental Dysfunction in Suramin-Treated Rats: Impact of Maternal Diabetes and Effects of Antioxidative Treatment. Reprod. Sci. 12, 174–184 (2005). https://doi.org/10.1016/j.jsgi.2004.12.002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2004.12.002

Key words

Navigation