Skip to main content

Oxidative Stress in Pregnancies Complicated by Diabetes

  • Chapter
  • First Online:
Perinatal and Prenatal Disorders

Abstract

The placenta is essential for normal foetal metabolism and growth. However, maternal diabetes is an unfavourable environment for embryonic and fetoplacental development, which may disrupt normal foetal programming, leading later to metabolic disease. Additionally, an adverse in utero environment may lead to foetal congenital anomalies. Existing diabetes before pregnancy (pregestational type 1 and or type 2 diabetes mellitus) may have negative effects on the embryonic development, while gestational diabetes mellitus (GDM) that occurs during late stages of pregnancy may affect the growth and maturation of the foetus. Many of the damaging effects of diabetes in pregnancy have been attributed to oxidative stress. Reactive oxygen and nitrogen species are by-products of a number of important biological pathways of pregnancy, including embryo development, implantation, angiogenesis, placental development and function. In healthy pregnancies, these reactive oxygen and nitrogen species can be controlled to ensure no damage ensues. However, in pregnancies complicated by diabetes, their excessive production and/or a reduction in antioxidant defence mechanisms results in a number of damaging outcomes. Animal models of diabetes in pregnancy have provided supportive evidence of reactive oxygen and nitrogen species generation and their damaging effects, which are dependent on the developmental stage. In this chapter, we will review the available data on oxidative stress in human diabetic pregnancies as well as in animal models of diabetes in pregnancy during early gestation, fetoplacental development and the perinatal period, as well as on its postnatal consequences. Human and animal data supportive of antioxidant treatments will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Effect of pregnancy on microvascular complications in the diabetes control and complications trial. The Diabetes Control and Complications Trial Research Group. Diabetes Care. 2000;23:1084–91.

    Google Scholar 

  2. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42:1634–50.

    CAS  PubMed  Google Scholar 

  3. Alvarado-Vasquez N, Zapata E, Alcazar-Leyva S, Masso F, Montano LF. Reduced NO synthesis and eNOS mRNA expression in endothelial cells from newborns with a strong family history of type 2 diabetes. Diabetes Metab Res Rev. 2007;23:559–66.

    CAS  PubMed  Google Scholar 

  4. Anastasiou E, Lekakis JP, Alevizaki M, Papamichael CM, Megas J, Souvatzoglou A, Stamatelopoulos SF. Impaired endothelium-dependent vasodilatation in women with previous gestational diabetes. Diabetes Care. 1998;21:2111–5.

    CAS  PubMed  Google Scholar 

  5. Ang C, Hillier C, Johnston F, Cameron A, Greer I, Lumsden MA. Endothelial function is preserved in pregnant women with well-controlled type 1 diabetes. BJOG. 2002;109:699–707.

    CAS  PubMed  Google Scholar 

  6. Ang C, Lumsden MA. Diabetes and the maternal resistance vasculature. Clin Sci (Lond). 2001;101:719–29.

    CAS  Google Scholar 

  7. Ategbo JM, Grissa O, Yessoufou A, Hichami A, Dramane KL, Moutairou K, Miled A, Grissa A, Jerbi M, Tabka Z, Khan NA. Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab. 2006;91:4137–43.

    CAS  PubMed  Google Scholar 

  8. Bainbridge SA, von Versen-Hoynck F, Roberts JM. Uric acid inhibits placental system A amino acid uptake. Placenta. 2009;30:195–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007;30:S112–9.

    CAS  PubMed  Google Scholar 

  10. Basaran A. Pregnancy-induced hyperlipoproteinemia: review of the literature. Reprod Sci. 2009;16:431–7.

    CAS  PubMed  Google Scholar 

  11. Basu S, Haghiac M, Surace P, Challier JC, Guerre-Millo M, Singh K, Waters T, Minium J, Presley L, Catalano PM, Hauguel-de Mouzon S. Pregravid obesity associates with increased maternal endotoxemia and metabolic inflammation. Obesity (Silver Spring). 2011;19(3): 476–482. doi:10.1038/oby.2010.215.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Beebe LF, Kaye PL. Maternal diabetes and retarded preimplantation development of mice. Diabetes. 1991;40:457–61.

    CAS  PubMed  Google Scholar 

  13. Bo S, Menato G, Gallo ML, Bardelli C, Lezo A, Signorile A, Gambino R, Cassader M, Massobrio M, Pagano G. Mild gestational hyperglycemia, the metabolic syndrome and adverse neonatal outcomes. Acta Obstet Gynecol Scand. 2004;83:335–40.

    PubMed  Google Scholar 

  14. Braissant O, Wahli W. Differential expression of peroxisome proliferator-activated receptor-alpha, -beta, and -gamma during rat embryonic development. Endocrinology. 1998;139:2748–54.

    CAS  PubMed  Google Scholar 

  15. Buchanan TA. Pancreatic B-cell defects in gestational diabetes: implications for the pathogenesis and prevention of type 2 diabetes. J Clin Endocrinol Metab. 2001;86:989–93.

    CAS  PubMed  Google Scholar 

  16. Buchanan TA, Xiang AH. Gestational diabetes mellitus. J Clin Invest. 2005;115:485–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Cani PD. Gut microbiota and pregnancy, a matter of inner life. Br J Nutr. 2009;101:1579–80.

    CAS  PubMed  Google Scholar 

  18. Capobianco E, White V, Sosa M, Marco ID, Basualdo MN, Faingold MC, Jawerbaum A. Regulation of matrix metalloproteinases 2 and 9 activities by peroxynitrites in term placentas from type 2 diabetic patients. Reprod Sci. 2012;19:814–22.

    PubMed  Google Scholar 

  19. Carr DB, Utzschneider KM, Hull RL, Tong J, Wallace TM, Kodama K, Shofer JB, Heckbert SR, Boyko EJ, Fujimoto WY, Kahn SE. Gestational diabetes mellitus increases the risk of cardiovascular disease in women with a family history of type 2 diabetes. Diabetes Care. 2006;29:2078–83.

    PubMed  Google Scholar 

  20. Casanello P, Escudero C, Sobrevia L. Equilibrative nucleoside (ENTs) and cationic amino acid (CATs) transporters: implications in foetal endothelial dysfunction in human pregnancy diseases. Curr Vasc Pharmacol. 2007;5:69–84.

    CAS  PubMed  Google Scholar 

  21. Casey BM, Lucas MJ, McIntire DD, Leveno KJ. Pregnancy outcomes in women with gestational diabetes compared with the general obstetric population. Obstet Gynecol. 1997;90:869–73.

    CAS  PubMed  Google Scholar 

  22. Catalano PM. Obesity, insulin resistance, and pregnancy outcome. Reproduction. 2010;140:365–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Cederberg J, Eriksson UJ. Decreased catalase activity in malformation-prone embryos of diabetic rats. Teratology. 1997;56:350–7.

    CAS  PubMed  Google Scholar 

  24. Ceriello A, Novials A, Ortega E, La Sala L, Pujadas G, Testa R, Bonfigli AR, Esposito K, Giugliano D. Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes. 2012;61:2993–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Cersosimo E, DeFronzo RA. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev. 2006;22:423–36.

    CAS  PubMed  Google Scholar 

  26. Cester N, Rabini RA, Salvolini E, Staffolani R, Curatola A, Pugnaloni A, Brunelli MA, Biagini G, Mazzanti L. Activation of endothelial cells during insulin-dependent diabetes mellitus: a biochemical and morphological study. Eur J Clin Invest. 1996;26:569–73.

    CAS  PubMed  Google Scholar 

  27. Chang SY, Chen YW, Zhao XP, Chenier I, Tran S, Sauve A, Ingelfinger JR, Zhang SL. Catalase prevents maternal diabetes-induced perinatal programming via the Nrf2-HO-1 defense system. Diabetes. 2012;61:2565–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Clausen P, Ekbom P, Damm P, Feldt-Rasmussen U, Nielsen B, Mathiesen ER, Feldt-Rasmussen B. Signs of maternal vascular dysfunction precede preeclampsia in women with type 1 diabetes. J Diabetes Complications. 2007;21:288–93.

    PubMed  Google Scholar 

  29. Coughlan MT, Oliva K, Georgiou HM, Permezel JM, Rice GE. Glucose-induced release of tumour necrosis factor-alpha from human placental and adipose tissues in gestational diabetes mellitus. Diabet Med. 2001;18:921–7.

    CAS  PubMed  Google Scholar 

  30. Dandona P, Ghanim H, Bandyopadhyay A, Korzeniewski K, Ling Sia C, Dhindsa S, Chaudhuri A. Insulin suppresses endotoxin-induced oxidative, nitrosative, and inflammatory stress in humans. Diabetes Care. 2010;33:2416–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Desoye G, Hauguel-de Mouzon S. The human placenta in gestational diabetes mellitus. The insulin and cytokine network. Diabetes Care. 2007;30 Suppl 2:S120–6.

    CAS  PubMed  Google Scholar 

  32. Diano S, Liu ZW, Jeong JK, Dietrich MO, Ruan HB, Kim E, Suyama S, Kelly K, Gyengesi E, Arbiser JL, Belsham DD, Sarruf DA, Schwartz MW, Bennett AM, Shanabrough M, Mobbs CV, Yang X, Gao XB, Horvath TL. Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med. 2011;17:1121–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Dubova EA, Pavlov KA, Esayan RM, Degtyareva EI, Shestakova MV, Shchegolev AI, Sukhikh GT. Vascular endothelial growth factor and its receptors in the placenta of women with type 1 diabetes mellitus. Bull Exp Biol Med. 2012;152:367–70.

    CAS  PubMed  Google Scholar 

  34. Ejdesjo A, Wentzel P, Eriksson UJ. Influence of maternal metabolism and parental genetics on fetal maldevelopment in diabetic rat pregnancy. Am J Physiol Endocrinol Metab. 2012;302:E1198–209.

    CAS  PubMed  Google Scholar 

  35. Engeland A, Bjorge T, Daltveit AK, Skurtveit S, Vangen S, Vollset SE, Furu K. Risk of diabetes after gestational diabetes and preeclampsia. A registry-based study of 230,000 women in Norway. Eur J Epidemiol. 2011;26:157–63.

    PubMed Central  PubMed  Google Scholar 

  36. Eriksson UJ. Congenital anomalies in diabetic pregnancy. Semin Fetal Neonatal Med. 2009;14:85–93.

    PubMed  Google Scholar 

  37. Escudero C, Sobrevia L. A hypothesis for preeclampsia: adenosine and inducible nitric oxide synthase in human placental microvascular endothelium. Placenta. 2008;29:469–83.

    CAS  PubMed  Google Scholar 

  38. Farias M, San Martin R, Puebla C, Pearson JD, Casado JF, Pastor-Anglada M, Casanello P, Sobrevia L. Nitric oxide reduces adenosine transporter ENT1 gene (SLC29A1) promoter activity in human fetal endothelium from gestational diabetes. J Cell Physiol. 2006;208:451–60.

    CAS  PubMed  Google Scholar 

  39. Felice F, Lucchesi D, di Stefano R, Barsotti MC, Storti E, Penno G, Balbarini A, Del Prato S, Pucci L. Oxidative stress in response to high glucose levels in endothelial cells and in endothelial progenitor cells: evidence for differential glutathione peroxidase-1 expression. Microvasc Res. 2010;80:332–8.

    CAS  PubMed  Google Scholar 

  40. Fetita LS, Sobngwi E, Serradas P, Calvo F, Gautier JF. Consequences of fetal exposure to maternal diabetes in offspring. J Clin Endocrinol Metab. 2006;91:3718–24.

    CAS  PubMed  Google Scholar 

  41. Flores C, Rojas S, Aguayo C, Parodi J, Mann G, Pearson JD, Casanello P, Sobrevia L. Rapid stimulation of L-arginine transport by D-glucose involves p42/44(mapk) and nitric oxide in human umbilical vein endothelium. Circ Res. 2003;92:64–72.

    CAS  PubMed  Google Scholar 

  42. Franke K, Harder T, Aerts L, Melchior K, Fahrenkrog S, Rodekamp E, Ziska T, Van Assche FA, Dudenhausen JW, Plagemann A. ‘Programming’ of orexigenic and anorexigenic hypothalamic neurons in offspring of treated and untreated diabetic mother rats. Brain Res. 2005;1031:276–83.

    CAS  PubMed  Google Scholar 

  43. Gao XL, Yang HX, Zhao Y. Variations of tumor necrosis factor-alpha, leptin and adiponectin in mid-trimester of gestational diabetes mellitus. Chin Med J (Engl). 2008;121:701–5.

    CAS  Google Scholar 

  44. GarcÃa-Patterson A, Corcoy R, Balsells M, Altirriba O, Adelantado JM, Cabero L, de Leiva A. A randomized controlled trial using glycemic plus fetal ultrasound parameters versus glycemic parameters to determine insulin therapy in gestational diabetes with fasting hyperglycemia. Diabetes Care. 2002;25:1261.

    Google Scholar 

  45. González M, Muñoz E, Puebla C, Guzmán-Gutiérrez E, Cifuentes F, Nien JK, Abarzúa F, Leiva A, Casanello P, Sobrevia L. Maternal and fetal metabolic dysfunction in pregnancy diseases associated with vascular oxidative and nitrative stress. In: Matata BM, Elahi M, editors. The molecular basis for origin of fetal congenital abnormalities and maternal health: an overview of association with oxidative stress. 2011. p. 98–115.

    Google Scholar 

  46. Gonzalez M, Gallardo V, Rodriguez N, Salomon C, Westermeier F, Guzman-Gutierrez E, Abarzua F, Leiva A, Casanello P, Sobrevia L. Insulin-stimulated L-arginine transport requires SLC7A1 gene expression and is associated with human umbilical vein relaxation. J Cell Physiol. 2011;226:2916–24.

    CAS  PubMed  Google Scholar 

  47. Groesch KA, Torry RJ, Wilber AC, Abrams R, Bieniarz A, Guilbert LJ, Torry DS. Nitric oxide generation affects pro- and anti-angiogenic growth factor expression in primary human trophoblast. Placenta. 2011;32:926–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Guzman-Gutierrez E, Abarzua F, Belmar C, Nien JK, Ramirez MA, Arroyo P, Salomon C, Westermeier F, Puebla C, Leiva A, Casanello P, Sobrevia L. Functional link between adenosine and insulin: a hypothesis for fetoplacental vascular endothelial dysfunction in gestational diabetes. Curr Vasc Pharmacol. 2011;9:750–62.

    CAS  PubMed  Google Scholar 

  49. Guzmán-Gutiérrez E, Arroyo P, Pardo F, Leiva A, Sobrevia L. The adenosine-insulin signaling axis in the fetoplacental endothelial dysfunction in gestational diabetes. In: Luis Sobrevia, editor. Gestational diabetes – causes, diagnosis and treatment; 2013; in press.

    Google Scholar 

  50. Guzman-Gutierrez E, Westermeier F, Salomon C, Gonzalez M, Pardo F, Leiva A, Sobrevia L. Insulin-increased L-arginine transport requires A(2A) adenosine receptors activation in human umbilical vein endothelium. PLoS One. 2012;7:e41705.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Harris LK, McCormick J, Cartwright JE, Whitley GS, Dash PR. S-nitrosylation of proteins at the leading edge of migrating trophoblasts by inducible nitric oxide synthase promotes trophoblast invasion. Exp Cell Res. 2008;314:1765–76.

    CAS  PubMed  Google Scholar 

  52. Higa R, Kurtz M, Mazzucco MB, Musikant D, White V, Jawerbaum A. Folic acid and safflower oil supplementation interacts and protects embryos from maternal diabetes-induced damage. Mol Hum Reprod. 2012;18:253–64.

    CAS  PubMed  Google Scholar 

  53. Higa R, White V, Martinez N, Kurtz M, Capobianco E, Jawerbaum A. Safflower and olive oil dietary treatments rescue aberrant embryonic arachidonic acid and nitric oxide metabolism and prevent diabetic embryopathy in rats. Mol Hum Reprod. 2010;16:286–95.

    CAS  PubMed  Google Scholar 

  54. Holemans K, Aerts L, Van Assche FA. Lifetime consequences of abnormal fetal pancreatic development. J Physiol. 2003;547:11–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Horvath EM, Magenheim R, Kugler E, Vacz G, Szigethy A, Levardi F, Kollai M, Szabo C, Lacza Z. Nitrative stress and poly(ADP-ribose) polymerase activation in healthy and gestational diabetic pregnancies. Diabetologia. 2009;52:1935–43.

    CAS  PubMed  Google Scholar 

  56. Howarth C, Gazis A, James D. Associations of Type 1 diabetes mellitus, maternal vascular disease and complications of pregnancy. Diabet Med. 2007;24:1229–34.

    CAS  PubMed  Google Scholar 

  57. Jansson N, Greenwood SL, Johansson BR, Powell TL, Jansson T. Leptin stimulates the activity of the system A amino acid transporter in human placental villous fragments. J Clin Endocrinol Metab. 2003;88:1205–11.

    CAS  PubMed  Google Scholar 

  58. Jansson T, Ekstrand Y, Björn C, Wennergren M, Powell TL. Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes. 2002;51:2214–9.

    CAS  PubMed  Google Scholar 

  59. Jansson T, Ekstrand Y, Wennergren M, Powell TL. Placental glucose transport in gestational diabetes mellitus. Am J Obstet Gynecol. 2001;184:111–6.

    CAS  PubMed  Google Scholar 

  60. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond). 2007;113:1–13.

    CAS  Google Scholar 

  61. Jansson T, Wennergren M, Powell TL. Placental glucose transport and GLUT 1 expression in insulin-dependent diabetes. Am J Obstet Gynecol. 1999;180:163–8.

    CAS  PubMed  Google Scholar 

  62. Jawerbaum A, Capobianco E. Review: effects of PPAR activation in the placenta and the fetus: implications in maternal diabetes. Placenta. 2011;32 Suppl 2:S212–7.

    PubMed  Google Scholar 

  63. Jawerbaum A, Gonzalez E. The role of alterations in arachidonic acid metabolism and nitric oxide homeostasis in rat models of diabetes during early pregnancy. Curr Pharm Des. 2005;11:1327–42.

    CAS  PubMed  Google Scholar 

  64. Jawerbaum A, Gonzalez E. Diabetic pregnancies: the challenge of developing in a pro-inflammatory environment. Curr Med Chem. 2006;13:2127–38.

    CAS  PubMed  Google Scholar 

  65. Jawerbaum A, Higa R, White V, Capobianco E, Pustovrh C, Sinner D, Martinez N, Gonzalez E. Peroxynitrites and impaired modulation of nitric oxide concentrations in embryos from diabetic rats during early organogenesis. Reproduction. 2005;130:695–703.

    CAS  PubMed  Google Scholar 

  66. Jawerbaum A, White V. Animal models in diabetes and pregnancy. Endocr Rev. 2010;31:680–701.

    PubMed  Google Scholar 

  67. Jones HN, Jansson T, Powell TL. Full-length adiponectin attenuates insulin signaling and inhibits insulin-stimulated amino Acid transport in human primary trophoblast cells. Diabetes. 2010;59:1161–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Jungheim ES, Moley KH. The impact of type 1 and type 2 diabetes mellitus on the oocyte and the preimplantation embryo. Semin Reprod Med. 2008;26:186–95.

    CAS  PubMed  Google Scholar 

  69. Kaaja R. Vascular complications in diabetic pregnancy. Thromb Res. 2011;127 Suppl 3:S53–5.

    CAS  PubMed  Google Scholar 

  70. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, Neifing JL, Ward WK, Beard JC, Palmer JP, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42:1663–72.

    CAS  PubMed  Google Scholar 

  71. Katkhuda R, Peterson ES, Roghair RD, Norris AW, Scholz TD, Segar JL. Sex-specific programming of hypertension in offspring of late-gestation diabetic rats. Pediatr Res. 2012;72:352–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod. 2003;69:1–7.

    CAS  PubMed  Google Scholar 

  73. Kautzky-Willer A, Prager R, Waldhausl W, Pacini G, Thomaseth K, Wagner OF, Ulm M, Streli C, Ludvik B. Pronounced insulin resistance and inadequate beta-cell secretion characterize lean gestational diabetes during and after pregnancy. Diabetes Care. 1997;20:1717–23.

    CAS  PubMed  Google Scholar 

  74. Kinalski M, Sledziewski A, Telejko B, Kowalska I, Kretowski A, Zarzycki W, Kinalska I. Lipid peroxidation, antioxidant defence and acid-base status in cord blood at birth: the influence of diabetes. Horm Metab Res. 2001;33:227–31.

    CAS  PubMed  Google Scholar 

  75. Kinalski M, Sledziewski A, Telejko B, Zarzycki W, Kinalska I. Lipid peroxidation and scavenging enzyme activity in streptozotocin-induced diabetes. Acta Diabetol. 2000;37:179–83.

    CAS  PubMed  Google Scholar 

  76. Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, Kalhan SC, Catalano PM. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51:2207–13.

    CAS  PubMed  Google Scholar 

  77. Kjos SL, Buchanan TA. Gestational diabetes mellitus. N Engl J Med. 1999;341:1749–56.

    CAS  PubMed  Google Scholar 

  78. Klein K, Satler M, Elhenicky M, Brix J, Krzyzanowska K, Schernthaner G, Husslein PW, Schernthaner G-H. Circulating levels of MCP-1 are increased in women with gestational diabetes. Prenat Diagn. 2008;28:845–51.

    CAS  PubMed  Google Scholar 

  79. Knock GA, McCarthy AL, Lowy C, Poston L. Association of gestational diabetes with abnormal maternal vascular endothelial function. Br J Obstet Gynaecol. 1997;104:229–34.

    CAS  PubMed  Google Scholar 

  80. Koletzko B, Lien E, Agostoni C, Bohles H, Campoy C, Cetin I, Decsi T, Dudenhausen JW, Dupont C, Forsyth S, Hoesli I, Holzgreve W, Lapillonne A, Putet G, Secher NJ, Symonds M, Szajewska H, Willatts P, Uauy R. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med. 2008;36:5–14.

    CAS  PubMed  Google Scholar 

  81. Kurtz M, Capobianco E, Martinez N, Fernandez J, Higa R, White V, Jawerbaum A. Carbaprostacyclin, a PPARdelta agonist, ameliorates excess lipid accumulation in diabetic rat placentas. Life Sci. 2010;86:781–90.

    CAS  PubMed  Google Scholar 

  82. Kurtz M, Martinez N, Capobianco E, Higa R, Fornes D, White V, Jawerbaum A. Increased nitric oxide production and gender-dependent changes in PPARalpha expression and signaling in the fetal lung from diabetic rats. Mol Cell Endocrinol. 2012;362:120–7.

    CAS  PubMed  Google Scholar 

  83. Lappas M. Activation of inflammasomes in adipose tissue of women with gestational diabetes. Mol Cell Endocrinol. 2014;382:74–83.

    CAS  PubMed  Google Scholar 

  84. Lappas M, Andrikopoulos S, Permezel M. Hypoxanthine-xanthine oxidase down-regulates GLUT1 transcription via SIRT1 resulting in decreased glucose uptake in human placenta. J Endocrinol. 2012;213:49–57.

    CAS  PubMed  Google Scholar 

  85. Lappas M, Hiden U, Desoye G, Froehlich J, Mouzon SH, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal. 2011;15:3061–100.

    CAS  PubMed  Google Scholar 

  86. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085.

    PubMed Central  PubMed  Google Scholar 

  87. Leach L, Gray C, Staton S, Babawale MO, Gruchy A, Foster C, Mayhew TM, James DK. Vascular endothelial cadherin and beta-catenin in human fetoplacental vessels of pregnancies complicated by Type 1 diabetes: associations with angiogenesis and perturbed barrier function. Diabetologia. 2004;47:695–709.

    CAS  PubMed  Google Scholar 

  88. Leduc L, Levy E, Bouity-Voubou M, Delvin E. Fetal programming of atherosclerosis: possible role of the mitochondria. Eur J Obstet Gynecol Reprod Biol. 2010;149:127–30.

    CAS  PubMed  Google Scholar 

  89. Leiva A, Pardo F, Ramirez MA, Farias M, Casanello P, Sobrevia L. Fetoplacental vascular endothelial dysfunction as an early phenomenon in the programming of human adult diseases in subjects born from gestational diabetes mellitus or obesity in pregnancy. Exp Diabetes Res. 2011;2011:349286.

    PubMed Central  PubMed  Google Scholar 

  90. Lepercq J, Cauzac M, Lahlou N, Timsit J, Girard J, Auwerx J, Hauguel-de Mouzon S. Overexpression of placental leptin in diabetic pregnancy: a critical role for insulin. Diabetes. 1998;47:847–50.

    CAS  PubMed  Google Scholar 

  91. Liguori A, D’Armiento FP, Palagiano A, Balestrieri ML, Williams-Ignarro S, de Nigris F, Lerman LO, D’Amora M, Rienzo M, Fiorito C, Ignarro LJ, Palinski W, Napoli C. Effect of gestational hypercholesterolaemia on omental vasoreactivity, placental enzyme activity and transplacental passage of normal and oxidised fatty acids. BJOG. 2007;114:1547–56.

    CAS  PubMed  Google Scholar 

  92. Lobner K, Knopff A, Baumgarten A, Mollenhauer U, Marienfeld S, Garrido-Franco M, Bonifacio E, Ziegler AG. Predictors of postpartum diabetes in women with gestational diabetes mellitus. Diabetes. 2006;55:792–7.

    PubMed  Google Scholar 

  93. Loeken MR. Free radicals and birth defects. J Matern Fetal Neonatal Med. 2004;15:6–14.

    CAS  PubMed  Google Scholar 

  94. Martinez N, Sosa M, Higa R, Fornes D, Capobianco E, Jawerbaum A. Dietary treatments enriched in olive and safflower oils regulate seric and placental matrix metalloproteinases in maternal diabetes. Placenta. 2012;33:8–16.

    CAS  PubMed  Google Scholar 

  95. Martinez N, White V, Kurtz M, Higa R, Capobianco E, Jawerbaum A. Activation of the nuclear receptor PPARalpha regulates lipid metabolism in foetal liver from diabetic rats: implications in diabetes-induced foetal overgrowth. Diabetes Metab Res Rev. 2011;27:35–46.

    CAS  PubMed  Google Scholar 

  96. Mayhew TM. Enhanced fetoplacental angiogenesis in pre-gestational diabetes mellitus: the extra growth is exclusively longitudinal and not accompanied by microvascular remodelling. Diabetologia. 2002;45:1434–9.

    CAS  PubMed  Google Scholar 

  97. Meigs JB, Larson MG, Fox CS, Keaney Jr JF, Vasan RS, Benjamin EJ. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study. Diabetes Care. 2007;30:2529–35.

    CAS  PubMed  Google Scholar 

  98. Metzger BE. Long-term outcomes in mothers diagnosed with gestational diabetes mellitus and their offspring. Clin Obstet Gynecol. 2007;50:972–9.

    PubMed  Google Scholar 

  99. Metzger BE, Buchanan TA, Coustan DR, de Leiva A, Dunger DB, Hadden DR, Hod M, Kitzmiller JL, Kjos SL, Oats JN, Pettitt DJ, Sacks DA, Zoupas C. Summary and recommendations of the fifth international workshop-conference on gestational diabetes mellitus. Diabetes Care. 2007;30 Suppl 2:S251–60.

    CAS  PubMed  Google Scholar 

  100. Moley KH. Hyperglycemia and apoptosis: mechanisms for congenital malformations and pregnancy loss in diabetic women. Trends Endocrinol Metab. 2001;12:78–82.

    CAS  PubMed  Google Scholar 

  101. Moley KH, Chi MMY, Knudson CM, Korsmeyer SJ, Mueckler MM. Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nat Med. 1998;4:1421–4.

    CAS  PubMed  Google Scholar 

  102. Montes A, Walden CE, Knopp RH, Cheung M, Chapman MB, Albers JJ. Physiologic and supraphysiologic increases in lipoprotein lipids and apoproteins in late pregnancy and postpartum. Possible markers for the diagnosis of “prelipemia”. Arteriosclerosis. 1984;4:407–17.

    CAS  PubMed  Google Scholar 

  103. Mordwinkin NM, Ouzounian JG, Yedigarova L, Montoro MN, Louie SG, Rodgers KE. Alteration of endothelial function markers in women with gestational diabetes and their fetuses. J Matern Fetal Neonatal Med. 2013;26(5):507–512. doi:10.3109/14767058.2012.736564.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Morgan SC, Relaix F, Sandell LL, Loeken MR. Oxidative stress during diabetic pregnancy disrupts cardiac neural crest migration and causes outflow tract defects. Birth Defects Res A Clin Mol Teratol. 2008;82:453–63.

    CAS  PubMed  Google Scholar 

  105. Myatt L. Review: reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta. 2010;31(Suppl):S66–9.

    PubMed Central  PubMed  Google Scholar 

  106. Napoli C, D’Armiento FP, Mancini FP, Postiglione A, Witztum JL, Palumbo G, Palinski W. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest. 1997;100:2680–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Nelson SM, Sattar N, Freeman DJ, Walker JD, Lindsay RS. Inflammation and endothelial activation is evident at birth in offspring of mothers with type 1 diabetes. Diabetes. 2007;56:2697–704.

    CAS  PubMed  Google Scholar 

  108. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–8.

    CAS  PubMed  Google Scholar 

  109. O’Suillivan JB. The Boston gestational diabetes studies: review and perspectives. In: Sutherland HW, Stowers JM, Pearsons DWM, editors; 1989. p. 287–94.

    Google Scholar 

  110. Okon EB, Chung AW, Rauniyar P, Padilla E, Tejerina T, McManus BM, Luo H, van Breemen C. Compromised arterial function in human type 2 diabetic patients. Diabetes. 2005;54:2415–23.

    CAS  PubMed  Google Scholar 

  111. Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod Toxicol. 2007;24:31–41.

    CAS  PubMed  Google Scholar 

  112. Ornoy A, Kimyagarov D, Yaffee P, Abir R, Raz I, Kohen R. Role of reactive oxygen species in diabetes-induced embryotoxicity: studies on pre-implantation mouse embryos cultured in serum from diabetic pregnant women. Isr J Med Sci. 1996;32:1066–73.

    CAS  PubMed  Google Scholar 

  113. Ornoy A, Tsadok MA, Yaffe P, Zangen SW. The Cohen diabetic rat as a model for fetal growth restriction: vitamins C and E reduce fetal oxidative stress but do not restore normal growth. Reprod Toxicol. 2009;28:521–9.

    CAS  PubMed  Google Scholar 

  114. Ou XH, Li S, Wang ZB, Li M, Quan S, Xing F, Guo L, Chao SB, Chen Z, Liang XW, Hou Y, Schatten H, Sun QY. Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Hum Reprod. 2012;27:2130–45.

    CAS  PubMed  Google Scholar 

  115. Ozdemir G, Ozden M, Maral H, Kuskay S, Cetinalp P, Tarkun I. Malondialdehyde, glutathione, glutathione peroxidase and homocysteine levels in type 2 diabetic patients with and without microalbuminuria. Ann Clin Biochem. 2005;42:99–104.

    CAS  PubMed  Google Scholar 

  116. Pampfer S, Vanderheyden I, McCracken JE, Vesela J, De Hertogh R. Increased cell death in rat blastocysts exposed to maternal diabetes in utero and to high glucose or tumor necrosis factor-alpha in vitro. Development. 1997;124:4827–36.

    CAS  PubMed  Google Scholar 

  117. Paradisi G, Biaggi A, Ferrazzani S, De Carolis S, Caruso A. Abnormal carbohydrate metabolism during pregnancy: association with endothelial dysfunction. Diabetes Care. 2002;25:560–4.

    CAS  PubMed  Google Scholar 

  118. Perrin MC, Terry MB, Kleinhaus K, Deutsch L, Yanetz R, Tiram E, Calderon-Margalit R, Friedlander Y, Paltiel O, Harlap S. Gestational diabetes and the risk of breast cancer among women in the Jerusalem Perinatal Study. Breast Cancer Res Treat. 2008;108:129–35.

    CAS  PubMed  Google Scholar 

  119. Perrin MC, Terry MB, Kleinhaus K, Deutsch L, Yanetz R, Tiram E, Calderon R, Friedlander Y, Paltiel O, Harlap S. Gestational diabetes as a risk factor for pancreatic cancer: a prospective cohort study. BMC Med. 2007;5:25.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Pisaneschi S, Boldrini A, Genazzani AR, Coceani F, Simoncini T. Feto-placental vascular dysfunction as a prenatal determinant of adult cardiovascular disease. Intern Emerg Med. 2013;8 Suppl 1:S41–5.

    PubMed  Google Scholar 

  121. Platt MJ, Stanisstreet M, Casson IF, Howard CV, Walkinshaw S, Pennycook S, McKendrick O. St Vincent’s Declaration 10 years on: outcomes of diabetic pregnancies. Diabet Med. 2002;19:216–20.

    CAS  PubMed  Google Scholar 

  122. Ponzio BF, Carvalho MH, Fortes ZB, do Carmo Franco M. Implications of maternal nutrient restriction in transgenerational programming of hypertension and endothelial dysfunction across F1-F3 offspring. Life Sci. 2012;90:571–7.

    CAS  PubMed  Google Scholar 

  123. Pustovrh MC, Capobianco E, Martinez N, Higa R, White V, Jawerbaum A. MMP/TIMP balance is modulated in vitro by 15dPGJ(2) in fetuses and placentas from diabetic rats. Eur J Clin Invest. 2009;39:1082–90.

    CAS  PubMed  Google Scholar 

  124. Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003;52:2951–8.

    CAS  PubMed  Google Scholar 

  125. Ramsay JE, Simms RJ, Ferrell WR, Crawford L, Greer IA, Lumsden MA, Sattar N. Enhancement of endothelial function by pregnancy: inadequate response in women with type 1 diabetes. Diabetes Care. 2003;26:475–9.

    PubMed  Google Scholar 

  126. Raza H, John A. Glutathione metabolism and oxidative stress in neonatal rat tissues from streptozotocin-induced diabetic mothers. Diabetes Metab Res Rev. 2004;20:72–8.

    CAS  PubMed  Google Scholar 

  127. Reece EA, Ma XD, Wu YK, Dhanasekaran D. Aberrant patterns of cellular communication in diabetes-induced embryopathy. I. Membrane signalling. J Matern Fetal Neonatal Med. 2002;11:249–53.

    CAS  PubMed  Google Scholar 

  128. Reece EA, Wu YK, Zhao Z, Dhanasekaran D. Dietary vitamin and lipid therapy rescues aberrant signaling and apoptosis and prevents hyperglycemia-induced diabetic embryopathy in rats. Am J Obstet Gynecol. 2006;194:580–5.

    CAS  PubMed  Google Scholar 

  129. Ricart W, Lopez J, Mozas J, Pericot A, Sancho MA, Gonzalez N, Balsells M, Luna R, Cortazar A, Navarro P, Ramirez O, Flandez B, Pallardo LF, Hernandez A, Ampudia J, Fernandez-Real JM, Hernandez-Aguado I, Corcoy R. Maternal glucose tolerance status influences the risk of macrosomia in male but not in female fetuses. J Epidemiol Community Health. 2009;63:64–8.

    CAS  PubMed  Google Scholar 

  130. Rocha SO, Gomes GN, Forti AL, do Carmo Pinho Franco M, Fortes ZB, de Fatima Cavanal M, Gil FZ. Long-term effects of maternal diabetes on vascular reactivity and renal function in rat male offspring. Pediatr Res. 2005;58:1274–9.

    PubMed  Google Scholar 

  131. Roghair RD, Segar JL, Volk KA, Chapleau MW, Dallas LM, Sorenson AR, Scholz TD, Lamb FS. Vascular nitric oxide and superoxide anion contribute to sex-specific programmed cardiovascular physiology in mice. Am J Physiol Regul Integr Comp Physiol. 2009;296:R651–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Ryan EA, Imes S, Liu D, McManus R, Finegood DT, Polonsky KS, Sturis J. Defects in insulin secretion and action in women with a history of gestational diabetes. Diabetes. 1995;44:506–12.

    CAS  PubMed  Google Scholar 

  133. Salomon C, Westermeier F, Puebla C, Arroyo P, Guzman-Gutierrez E, Pardo F, Leiva A, Casanello P, Sobrevia L. Gestational diabetes reduces adenosine transport in human placental microvascular endothelium, an effect reversed by insulin. PLoS One. 2012;7:e40578.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Salvolini E, Rabini RA, Martarelli D, Moretti N, Cester N, Mazzanti L. A study on human umbilical cord endothelial cells: functional modifications induced by plasma from insulin-dependent diabetes mellitus patients. Metabolism. 1999;48:554–7.

    CAS  PubMed  Google Scholar 

  135. San Martin R, Sobrevia L. Gestational diabetes and the adenosine/L-arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta. 2006;27:1–10.

    CAS  PubMed  Google Scholar 

  136. Sank A, Wei D, Reid J, Ertl D, Nimni M, Weaver F, Yellin A, Tuan TL. Human endothelial cells are defective in diabetic vascular disease. J Surg Res. 1994;57:647–53.

    CAS  PubMed  Google Scholar 

  137. Setji TL, Brown AJ, Feinglos MN. Gestational diabetes mellitus. Clin Diab. 2005;23:17–24.

    Google Scholar 

  138. Sgarbosa F, Barbisan LF, Brasil MA, Costa E, Calderon IM, Goncalves CR, Bevilacqua E, Rudge MV. Changes in apoptosis and Bcl-2 expression in human hyperglycemic, term placental trophoblast. Diabetes Res Clin Pract. 2006;73:143–9.

    CAS  PubMed  Google Scholar 

  139. Shah BR, Retnakaran R, Booth GL. Increased risk of cardiovascular disease in young women following gestational diabetes mellitus. Diabetes Care. 2008;31:1668–9.

    PubMed Central  PubMed  Google Scholar 

  140. Shand AW, Bell JC, McElduff A, Morris J, Roberts CL. Outcomes of pregnancies in women with pre-gestational diabetes mellitus and gestational diabetes mellitus; a population-based study in New South Wales, Australia, 1998–2002. Diabet Med. 2008;25:708–15.

    CAS  PubMed  Google Scholar 

  141. Sharp AN, Heazell AE, Crocker IP, Mor G. Placental apoptosis in health and disease. Am J Reprod Immunol. 2010;64:159–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Sheffield JS, Butler-Koster EL, Casey BM, McIntire DD, Leveno KJ. Maternal diabetes mellitus and infant malformations. Obstet Gynecol. 2002;100:925–30.

    PubMed  Google Scholar 

  143. Shivananjappa MM, Muralidhara. Abrogation of maternal and fetal oxidative stress in the streptozotocin-induced diabetic rat by dietary supplements of Tinospora cordifolia. Nutrition. 2012;28:581–7.

    CAS  PubMed  Google Scholar 

  144. Siman CM, Eriksson UJ. Vitamin E decreases the occurrence of malformations in the offspring of diabetic rats. Diabetes. 1997;46:1054–61.

    CAS  PubMed  Google Scholar 

  145. Simmons RA. Role of metabolic programming in the pathogenesis of beta-cell failure in postnatal life. Rev Endocr Metab Disord. 2007;8:95–104.

    CAS  PubMed  Google Scholar 

  146. Singh CK, Kumar A, Hitchcock DB, Fan D, Goodwin R, LaVoie HA, Nagarkatti P, DiPette DJ, Singh US. Resveratrol prevents embryonic oxidative stress and apoptosis associated with diabetic embryopathy and improves glucose and lipid profile of diabetic dam. Mol Nutr Food Res. 2011;55:1186–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Sinzato YK, Volpato GT, Iessi IL, Bueno A, Calderon Ide M, Rudge MV, Damasceno DC. Neonatally induced mild diabetes in rats and its effect on maternal, placental, and fetal parameters. Exp Diabetes Res. 2012;2012:108163.

    PubMed Central  PubMed  Google Scholar 

  148. Sivan E, Lee YC, Wu YK, Reece EA. Free radical scavenging enzymes in fetal dysmorphogenesis among offspring of diabetic rats. Teratology. 1997;56:343–9.

    CAS  PubMed  Google Scholar 

  149. Skilton MR. Intrauterine risk factors for precocious atherosclerosis. Pediatrics. 2008;121:570–4.

    PubMed  Google Scholar 

  150. Sobrevia L, Abarzua F, Nien JK, Salomon C, Westermeier F, Puebla C, Cifuentes F, Guzman-Gutierrez E, Leiva A, Casanello P. Review: differential placental macrovascular and microvascular endothelial dysfunction in gestational diabetes. Placenta. 2011;32 Suppl 2:S159–64.

    PubMed  Google Scholar 

  151. Sobrevia L, Gonzalez M. A role for insulin on L-arginine transport in fetal endothelial dysfunction in hyperglycaemia. Curr Vasc Pharmacol. 2009;7:467–74.

    CAS  PubMed  Google Scholar 

  152. Sugimura Y, Murase T, Oyama K, Uchida A, Sato N, Hayasaka S, Kano Y, Takagishi Y, Hayashi Y, Oiso Y, Murata Y. Prevention of neural tube defects by loss of function of inducible nitric oxide synthase in fetuses of a mouse model of streptozotocin-induced diabetes. Diabetologia. 2009;52:962–71.

    CAS  PubMed  Google Scholar 

  153. Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord. 2010;11:61–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Tain YL, Lee WC, Hsu CN, Huang LT, Lee CT, Lin CY. Asymmetric dimethylarginine is associated with developmental programming of adult kidney disease and hypertension in offspring of streptozotocin-treated mothers. PLoS One. 2013;8:e55420.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Thakur S, Du J, Hourani S, Ledent C, Li JM. Inactivation of adenosine A2A receptor attenuates basal and angiotensin II-induced ROS production by Nox2 in endothelial cells. J Biol Chem. 2010;285:40104–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Thaler CD, Epel D. Nitric oxide in oocyte maturation, ovulation, fertilization, cleavage and implantation: a little dab’ll do ya. Curr Pharm Des. 2003;9:399–409.

    CAS  PubMed  Google Scholar 

  157. Thompson JA, Webb RC. Potential role of Toll-like receptors in programming of vascular dysfunction. Clin Sci (Lond). 2013;125:19–25.

    CAS  Google Scholar 

  158. Thompson LP, Al-Hasan Y. Impact of oxidative stress in fetal programming. J Pregnancy. 2012;2012:582748.

    PubMed Central  PubMed  Google Scholar 

  159. Umekawa T, Sugiyama T, Kihira T, Murabayashi N, Zhang L, Nagao K, Kamimoto Y, Ma N, Yodoi J, Sagawa N. Overexpression of thioredoxin-1 reduces oxidative stress in the placenta of transgenic mice and promotes fetal growth via glucose metabolism. Endocrinology. 2008;149:3980–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Vasquez G, Sanhueza F, Vasquez R, Gonzalez M, San Martin R, Casanello P, Sobrevia L. Role of adenosine transport in gestational diabetes-induced L-arginine transport and nitric oxide synthesis in human umbilical vein endothelium. J Physiol. 2004;560:111–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Vitoratos N, Valsamakis G, Mastorakos G, Boutsiadis A, Salakos N, Kouskouni E, Creatsas G. Pre- and early post-partum adiponectin and interleukin-1beta levels in women with and without gestational diabetes. Hormones (Athens). 2008;7:230–6.

    Google Scholar 

  162. Vohr BR, Boney CM. Gestational diabetes: the forerunner for the development of maternal and childhood obesity and metabolic syndrome? J Matern Fetal Neonatal Med. 2008;21:149–57.

    CAS  PubMed  Google Scholar 

  163. Volpato GT, Calderon IM, Sinzato S, Campos KE, Rudge MV, Damasceno DC. Effect of Morus nigra aqueous extract treatment on the maternal-fetal outcome, oxidative stress status and lipid profile of streptozotocin-induced diabetic rats. J Ethnopharmacol. 2011;138:691–6.

    CAS  PubMed  Google Scholar 

  164. Wahabi HA, Esmaeil SA, Fayed A, Al-Shaikh G, Alzeidan RA. Pre-existing diabetes mellitus and adverse pregnancy outcomes. BMC Res Notes. 2012;5:496.

    PubMed Central  PubMed  Google Scholar 

  165. Wang H, Wang AX, Liu Z, Chai W, Barrett EJ. The trafficking/interaction of eNOS and caveolin-1 induced by insulin modulates endothelial nitric oxide production. Mol Endocrinol. 2009;23:1613–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Wang Y, Walsh SW. Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta. 1998;19:581–6.

    CAS  PubMed  Google Scholar 

  167. Weiss U, Cervar M, Puerstner P, Schmut O, Haas J, Mauschitz R, Arikan G, Desoye G. Hyperglycaemia in vitro alters the proliferation and mitochondrial activity of the choriocarcinoma cell lines BeWo, JAR and JEG-3 as models for human first-trimester trophoblast. Diabetologia. 2001;44:209–19.

    CAS  PubMed  Google Scholar 

  168. Weksler-Zangen S, Yaffe P, Ornoy A. Reduced SOD activity and increased neural tube defects in embryos of the sensitive but not of the resistant Cohen diabetic rats cultured under diabetic conditions. Birth Defects Res A Clin Mol Teratol. 2003;67:429–37.

    CAS  PubMed  Google Scholar 

  169. Wentzel P, Gareskog M, Eriksson UJ. Decreased cardiac glutathione peroxidase levels and enhanced mandibular apoptosis in malformed embryos of diabetic rats. Diabetes. 2008;57:3344–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Westermeier F, Puebla C, Vega JL, Farias M, Escudero C, Casanello P, Sobrevia L. Equilibrative nucleoside transporters in fetal endothelial dysfunction in diabetes mellitus and hyperglycaemia. Curr Vasc Pharmacol. 2009;7:435–49.

    CAS  PubMed  Google Scholar 

  171. Westermeier F, Salomon C, Gonzalez M, Puebla C, Guzman-Gutierrez E, Cifuentes F, Leiva A, Casanello P, Sobrevia L. Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium. Diabetes. 2011;60:1677–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Westgate JA, Lindsay RS, Beattie J, Pattison NS, Gamble G, Mildenhall LF, Breier BH, Johnstone FD. Hyperinsulinemia in cord blood in mothers with type 2 diabetes and gestational diabetes mellitus in New Zealand. Diabetes Care. 2006;29:1345–50.

    PubMed  Google Scholar 

  173. Williams R. The economic impact of diabetes. In: Allgot B, Gan D, King H et al., eds. Diabetes Atlas. 2nd ed. Brussels: International Diabetes Federation, 2003. p175–192.

    Google Scholar 

  174. Winkler G, Cseh K, Baranyi E, Melczer Z, Speer G, Hajos P, Salamon F, Turi Z, Kovacs M, Vargha P, Karadi I. Tumor necrosis factor system in insulin resistance in gestational diabetes. Diabetes Res Clin Pract. 2002;56:93–9.

    CAS  PubMed  Google Scholar 

  175. Wu CS, Nohr EA, Bech BH, Vestergaard M, Olsen J. Long-term health outcomes in children born to mothers with diabetes: a population-based cohort study. PLoS One. 2012;7:e36727.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Xiong X, Saunders LD, Wang FL, Demianczuk NN. Gestational diabetes mellitus: prevalence, risk factors, maternal and infant outcomes. Int J Gynaecol Obstet. 2001;75:221–8.

    CAS  PubMed  Google Scholar 

  177. Yessoufou A, Soulaimann N, Merzouk SA, Moutairou K, Ahissou H, Prost J, Simonin AM, Merzouk H, Hichami A, Khan NA. N-3 fatty acids modulate antioxidant status in diabetic rats and their macrosomic offspring. Int J Obes (Lond). 2006;30:739–50.

    CAS  Google Scholar 

  178. Zabihi S, Loeken MR. Understanding diabetic teratogenesis: where are we now and where are we going? Birth Defects Res A Clin Mol Teratol. 2010;88:779–90.

    CAS  PubMed  Google Scholar 

  179. Zamudio S, Baumann MU, Illsley NP. Effects of chronic hypoxia in vivo on the expression of human placental glucose transporters. Placenta. 2006;27:49–55.

    CAS  PubMed  Google Scholar 

  180. Zawiejska A, Wender-Ozegowska E, Pietryga M, Brazert J. Maternal endothelial dysfunction and its association with abnormal fetal growth in diabetic pregnancy. Diabet Med. 2011;28:692–8.

    CAS  PubMed  Google Scholar 

  181. Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest. 1996;98:894–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Zhang Y, Handy DE, Loscalzo J. Adenosine-dependent induction of glutathione peroxidase 1 in human primary endothelial cells and protection against oxidative stress. Circ Res. 2005;96:831–7.

    CAS  PubMed  Google Scholar 

  183. Zhao Z, Eckert RL, Reece EA. Reduction in embryonic malformations and alleviation of endoplasmic reticulum stress by nitric oxide synthase inhibition in diabetic embryopathy. Reprod Sci. 2012;19:823–31.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

ML is supported by Career Development Fellowships from National Health and Medical Research Council (NHMRC) (#454777 and #1047025). The work from Associate Professor Lappas’s laboratory was funded by project grants from the Medical Research Foundation for Women and Babies, NHMRC (grant no. 454310) and Diabetes Australia Research Trust (DART). Work from Dr. Jawerbaum’s laboratory was supported by ANPCYT (PICT 2010–00034) and by CONICET (PIP 11220100100002). Work from Prof. Sobrevia’s laboratory was supported by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 1110977, 11110059, 3130583), Programa de Investigación Interdisciplinario (PIA) from Comisión Nacional de Investigación en Ciencia y Tecnología (CONICYT, Anillos ACT-73) (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Lappas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lappas, M., Leiva, A., Pardo, F., Sobrevía, L., Jawerbaum, A. (2014). Oxidative Stress in Pregnancies Complicated by Diabetes. In: Dennery, P., Buonocore, G., Saugstad, O. (eds) Perinatal and Prenatal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1405-0_3

Download citation

Publish with us

Policies and ethics