Skip to main content

Advertisement

Log in

Taurine Transport Into Fetal Cord Blood Cells: Inhibition by Cyclosporine A

  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objectives

Pregnant women undergoing long-term organ transplant treatment have an increased incidence oj delivering infants with intrauterine growth restriction (IUGR). Cyclosporine A is used as an immunosuppressant in such women and indirect evidence suggests that IUGR might result from an effect of cyclosporine A on amino acid transport by the placenta. In this study we tested the hypothesis that the transport of an essential amino acid, taurine, by fetal tissue other than the placenta is modulated by cyclosporine A.

Methods

Cord blood cells (CBCs) were used to test this hypothesis as an easily obtainable fetal tissue. Transport of taurine into CBCs was measured using standard tracer flux assays.

Results

Uptake of [3H] taurine by CBCs was linear over 15 minutes (76.2 ± 16.6 fmol/106 cells/min, mean ± SEM, n = 6) and inhibitable by 10 mM β-alanine, a substrate of the system-β taurine transport protein (6.7 ± 1.0 fmol/106 cells/min, n = 6, P <.05, paired Student t test). Pre-incubation with cyclosporine A (5 µM) inhibited [3H] taurine uptake by 29.3%-5.3% (n = 8, P <.05, paired Student t test).

Conclusions

These data show that amino acid transport via system-β can be measured in CBCs and may be a useful model for amino acid transport studies in fetal cells. We also show that system-β was inhibited by the immunosuppressant, cyclosporine A. This suggests that the increased incidence of IUGR reported in mothers treated with cyclosporine A may be due partially to effects on taurine uptake into fetal cells outside the placenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pryor J. The identification and long term effects of fetal growth restriction. BrJ Obstet Gynaecol 1997;104:1116–22.

    Article  CAS  PubMed  Google Scholar 

  2. Fanaroff AA, Wright LL, Stevenson DK, et al. Very-low-birth-weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, May 1991 through December 1992. Am J Obstet Gynecol 1995;173:1423–31.

    Article  CAS  PubMed  Google Scholar 

  3. Blair E, Stanley F. Intrauterine growth and spastic cerebral palsy. I. Association with birth weight for gestational age. AmJ Obstet Gynecol 1990;162:229–37.

    Article  CAS  PubMed  Google Scholar 

  4. Godfrey KM, Barker DJ. Fetal nutrition and adult disease. AmJ Clin Nutr 2000;71:1344S–52S.

    Article  CAS  PubMed  Google Scholar 

  5. Leger J, Levy-Marchal C, Bloch J, et al. Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: Regional cohort study. BrMed J 1997;315:341–7.

    Article  CAS  Google Scholar 

  6. Mahendran D, Donnai P, Glazier JD, et al. Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babies. PediatrRes 1993;34:661–5.

    Article  CAS  PubMed  Google Scholar 

  7. Jansson T, Scholtbach V, Powell TL. Placental transport of leucine and lysine is reduced in intrauterine growth restriction. PediatrRes 1998;44:532–7.

    Article  CAS  PubMed  Google Scholar 

  8. Norberg S, Powell TL, Jansson T. Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters. PediatrRes 1998;44:233–8.

    Article  CAS  PubMed  Google Scholar 

  9. Harrington B, Glazier J, D’Souza S, Sibley C. System A amino acid transporter activity in human placental microvillous membrane vesicles in relation to various anthropometric measurements in appropriate and small for gestational age babies. PediatrRes 1999;45:810–4.

    Article  CAS  PubMed  Google Scholar 

  10. Huxtable RJ. Physiological actions of taurine. PhysiolRev 1992;72:101–63.

    Article  CAS  PubMed  Google Scholar 

  11. Sturman JA, Moretz RC, French JH, Wisniewski HM. Postnatal taurine deficiency in the kitten results in a persistence of the cerebellar external granule cell layer: Correction by taurine feeding. JNeurosci Res 1985;13:521–8.

    Article  CAS  PubMed  Google Scholar 

  12. Sturman JA, Messing JM. Dietary taurine content and feline reproduction and outcome. JNutr 1991;121:1195–203.

    Article  CAS  PubMed  Google Scholar 

  13. Sturman JA, Messing JM. High dietary taurine effects on feline tissue taurine concentrations and reproductive performance. JNutr 1992;122:82–8.

    Article  CAS  PubMed  Google Scholar 

  14. Sturman JA. Taurine in development. PhysiolRev 1993;73:119–47.

    Article  CAS  PubMed  Google Scholar 

  15. Gaull G, Sturman JA, Raiha NC. Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. PediatrRes 1972;6:538–47.

    Article  CAS  PubMed  Google Scholar 

  16. Ejiri K, Akahori S, Kudo K, Sekiba K, Ubuka T. Effect of guanidinoethyl sulfonate on taurine concentrations and fetal growth in pregnant rats. BiolNeonate 1987;51:234–40.

    Article  CAS  PubMed  Google Scholar 

  17. Ramamoorthy S, Leibach FH, Mahesh VB, et al. Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta. BiochemJ 1994;300:893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Willis FR, Findlay CA, Gorrie MJ, et al. Children of renal transplant recipient mothers. JPaediatr Child Health 2000;36:230–5.

    Article  CAS  PubMed  Google Scholar 

  19. Pickrell MD, Sawers R, Michael J. Pregnancy after renal trans-plantation: Severe intrauterine growth retardation during treat-ment with cyclosporin A. Br Med J 1988;296:825.

    Article  CAS  Google Scholar 

  20. Lamarque V, Leleu MF, Monka C, Krupp P. Analysis of 629 pregnancy outcomes in transplant recipients treated with Sandimmun. TransplantProc 1997;29:2480.

    Article  CAS  PubMed  Google Scholar 

  21. Cockburn IT, Krupp P, An appraisal of drug interactions with Sandimmun. TransplantProc 1989;21:3845–50.

    CAS  PubMed  Google Scholar 

  22. Armenti VT, Stefanosky EV, Cater JR, et al. Pregnancy in transplant recipients. JTranspland Coord 1995;5:130–6.

    Google Scholar 

  23. Armenti VT, Moritz MJ, Davison JM. Drug safety issues in pregnancy following transplantation and immunosuppression: Effects and outcomes. DrugSaf Con 1998;19:219–32.

    Article  CAS  Google Scholar 

  24. Tendron A, Gouyon JB, Decramer S. In utero exposure to immunosuppressive drugs: Experimental and clinical studies. PediatrNephrol 2002;17:121–30.

    Article  PubMed  Google Scholar 

  25. Miniero R, Tardivo I, Curtoni ES, et al. Pregnancy after renal transplantation in Italian patients: Focus on fetal outcome. JNephrol 2002;15:626–32.

    PubMed  Google Scholar 

  26. Mason RJ, Thomson AW, Whiting PH, et al. Cyclosporine-induced fetotoxicity in the rat. Transplantation 1985;39:9–12.

    CAS  PubMed  Google Scholar 

  27. Pavek P, Fendrich Z, Staud F, et al. Influence of P-glycoprotein on the transplacental passage of cyclosporine. JPharm Sci 2001;90:1583–92.

    Article  CAS  PubMed  Google Scholar 

  28. Ramamoorthy S, Leibach FH, Mahesh VB, Ganapathy V. Se-lective impairment of taurine transport by cyclosporin A in a human placental cell line. PediatrRes 1992;32:125–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wan TS, Tarn AY, Yeung CY. Neutrophil separation technique for neonates. BrJ Biomed Sci 1999;56:205–8.

    CAS  PubMed  Google Scholar 

  30. Furesz TC, Moe AJ, Smith CH. Two cationic amino-acid-transport systems in human placental basal plasma-membranes. Am J Physiol 1991;261:C246–52.

    Article  CAS  PubMed  Google Scholar 

  31. Karl PI, Fisher SE. Taurine transport by microvillous membrane vesicles and the perfused cotyledon of the human placenta. AmJ Physiol 1990;258:C443–51.

    Article  CAS  PubMed  Google Scholar 

  32. Segel GB. Haematology of the newborn. In: Williams WJ, ed. William’s Haematology. London: McGraw-Hill, 1995:57–62.

    Google Scholar 

  33. Kanemori H, Ejiri K, Akahori S, Kudo T, Sekiba K, Concen-tration and uptake of taurine in umbilical blood platelets. ActaMed Okayama 1992;46:169–74.

    CAS  PubMed  Google Scholar 

  34. Motais R, Fievet B, Borgese F, Garcia-Romeu F. Association of the band 3 protein with a volume-activated, anion and amino acid channel: A molecular approach. JExp Biol 1997;200:361–67.

    CAS  PubMed  Google Scholar 

  35. Gonska T, Hirsch JR, Schlatter E. Amino acid transport in the renal proximal tubule. AminoAcids 2000;19:395–407.

    Article  CAS  PubMed  Google Scholar 

  36. Chesney RW, Jax DK. Development aspects of renal beta-amino acid transport II. Ontogeny of uptake and efflux processes and effect of anoxia. PediatrRes 1979;13:861–7.

    Article  CAS  PubMed  Google Scholar 

  37. Moyer MS, Goodrich AL, Rolfes MM, Suchy FJ. Ontogenesis of intestinal taurine transport: Evidence for a beta-carrier in developing rat jejunum. AmJ Physiol 1988;254:G870–7.

    CAS  PubMed  Google Scholar 

  38. Kim HW, Lee EJ, Kim WB, Kim BK. Ionomycin restores taurine transporter activity in cyclosporin-A treated macro-phages. Adv Exp Med Biol 2000;483:127–35.

    Article  CAS  PubMed  Google Scholar 

  39. Shaw KT, Ho AM, Raghavan A, et al. Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. ProcNad Acad Sci USA 1995;92:11205–9.

    Article  CAS  Google Scholar 

  40. Lima L, Cubillos S, Guerra A. Regulation of high affinity taurine transport in goldfish and rat retinal cells. AdvExp Med Biol 2000;483:431–40.

    Article  CAS  PubMed  Google Scholar 

  41. Padma S, Subramanyam C. Extracellular calcineurin: Identification and quantitation in serum and amniotic fluid. ClinBiochem 1999;32:491–4.

    Article  CAS  PubMed  Google Scholar 

  42. Venkataramanan R, Koneru B, Wang CC, et al. Cyclosporine and its metabolites in mother and baby. Transplantation 1988;46:468–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scantlebury V, Gordon R, Tzakis A, et al. Childbearing after liver transplantation. Transplantation 1990;49:317–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tegzess AM, Doorenbos BM, Minderhoud JM, Donker AJ. Prospective serial renal function studies in patients with non-renal disease treated with cyclosporine A. Transplant Proc 1988;20:390–3.

    CAS  PubMed  Google Scholar 

  45. Bertin E, Gangnerau M, Bellon G, et al. Development of beta-cell mass in fetuses of rats deprived of protein and/or energy in last trimester of pregnancy. AmJ Physiol 2002;283:R623–30.

    Article  CAS  Google Scholar 

  46. Nag TC, Jotwani G, Wadhwa S. Immunohistochemical local-ization of taurine in the retina of developing and adult human and adult monkey. NeurochemInt 1998;33:195–200.

    Article  CAS  PubMed  Google Scholar 

  47. Heller-Stilb B, van Roeyen C, Rascher K, et al. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEBJ 2002;16:231–3.

    Article  CAS  PubMed  Google Scholar 

  48. Aerts L, Van Assche FA. Taurine and taurine-deficiency in the perinatal period. JPerinat Med 2002;30:281–6.

    Article  CAS  PubMed  Google Scholar 

  49. Han X, Budreau AM, Chesney RW. The taurine transporter gene and its role in renal development. AminoAcids 2000;19:499–507.

    Article  CAS  PubMed  Google Scholar 

  50. Jansson T. Amino acid transporters in the human placenta. PediatrRes 2001;49:141–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Speake PhD.

Additional information

Supported by The Wellcome Trust and an Action Research Endowment Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speake, P.F., Zipitis, C.S., Houston, A. et al. Taurine Transport Into Fetal Cord Blood Cells: Inhibition by Cyclosporine A. Reprod. Sci. 11, 472–477 (2004). https://doi.org/10.1016/j.jsgi.2004.05.004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2004.05.004

Key words

Navigation