Skip to main content
Log in

Using ESI-MS to probe protein structure by site-specific noncovalent attachment of 18-crown-6

  • Articles
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

A new method for probing the equilibrium structures and folding states of proteins utilizing electrospray ionization mass spectrometry is described. Protein structure is explored as a function of side-chain availability as determined by a specific interaction between lysine and 18-crown-6 ether (18C6). Various intramolecular interactions are competitive with the lysine/18C6 interaction and can prevent noncovalent attachment of 18C6. Changes to protein structure modify these inhibiting intramolecular interactions, which leads to a change in the number of 18C6s that attach to the protein. Experiments conducted with cytochrome c, ubiquitin, and melittin reveal that the method is sensitive to changes in both tertiary and secondary structure. In addition, the structure of each charge state can be examined independently. Experiments can be performed under conditions where the pH and amount of organic cosolvent are varied. Control experiments conducted with pentalysine, which lacks structural organization, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wales, T. E.; Engen, J. R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 2006, 25, 158–170.

    Article  CAS  Google Scholar 

  2. Kaltashov, I. A.; Eyles, S. J. Studies of biomolecular conformations and conformational dynamics by mass spectrometry. Mass Spectrom. Rev. 2002, 21, 37–71.

    Article  CAS  Google Scholar 

  3. Englander, S. W. Protein folding intermediates and pathways studied by hydrogen exchange. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 213–238.

    Article  CAS  Google Scholar 

  4. Mandell, J. G.; Falick, A. M.; Komives, E. A. Measurement of amide hydrogen exchange by MALDI-TOF mass spectrometry. Anal. Chem. 1998, 70, 3987–3995.

    Article  CAS  Google Scholar 

  5. Garcia, R. A.; Pantazatos, D.; Villareal, F. J. Hydrogen/deuterium exchange mass spectrometry for investigating protein-ligand interactions. Assay Drug Dev. Technol. 2004, 2, 81–91.

    Article  CAS  Google Scholar 

  6. Zhu, M. M.; Chitta, R.; Gross, M. L. PLIMSTEX. A novel mass spectrometric method for the quantification of protein-ligand interactions in solution. Int. J. Mass Spectrom. 2005, 240, 213–220.

    Article  CAS  Google Scholar 

  7. Roulhac, P. L.; Powell, K. D.; Dhungana, S.; Weaver, K. D.; Mietzner, T. A.; Crumbliss, A. L.; Fitzgerald, M. C. SUPREX (stability of unpurified proteins from rates of H/D exchange) analysis of the thermodynamics of synergistic anion binding by ferric-binding protein (FbpA), a bacterial transferrin. Biochemistry. 2004, 43, 15767–15774.

    Article  CAS  Google Scholar 

  8. Pan, J.; Wilson, D. J.; Konermann, L. Pulsed hydrogen exchange and electrospray charge-state distribution as complementary probes of protein structure in kinetic experiments: Implications for ubiquitin folding. Biochemistry. 2005, 44, 8627–8633.

    Article  CAS  Google Scholar 

  9. Yan, X.; Watson, J.; Ho, P. S.; Deinzer, M. L. Mass spectrometric approaches using electrospray ionization charge states and hydrogen-deuterium exchange for determining protein structures and their conformational changes. Mol. Cell. Proteom. 2003, 3, 10–23.

    Article  Google Scholar 

  10. Grandori, R. Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry. J. Mass Spectrom. 2003, 38, 11–15.

    Article  CAS  Google Scholar 

  11. Dobo, A.; Kaltashov, I. A. Detection of multiple protein conformational ensembles in solution via deconvolution of charge-state distributions in ESI MS. Anal. Chem. 2001, 73, 4763–4773.

    Article  CAS  Google Scholar 

  12. Fenn, J. B. Ion formation from charged droplets—roles of geometry, energy, and time. J. Am. Soc. Mass Spectrom. 1993, 4, 524–535.

    Article  CAS  Google Scholar 

  13. Konermann, L.; Douglas, D. J. Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: distinguishing two-state from multi-state transitions. Rapid Commun. Mass Spectrom. 1998, 12, 435–442.

    Article  CAS  Google Scholar 

  14. Konermann, L.; Douglas, D. J. Unfolding of proteins monitored by electrospray ionization mass spectrometry: A comparison of positive and negative ion modes. J. Am. Soc. Mass Spectrom. 1998, 9, 1248–1254.

    Article  CAS  Google Scholar 

  15. Julian, R. R.; Beauchamp, J. L. Site specific sequestering and stabilization of charge in peptides by supramolecular adduct formation with 18-crown-6 ether by way of electrospray ionization. Int. J. Mass Spectrom. 2001, 210, 613–623;

    Article  Google Scholar 

  16. Cunniff, J. B.; Vouros, P. Mass and charge state assignment for proteins and peptide mixtures via noncovalent adduction in electrospray mass spectrometry. J. Am. Soc. Mass Spectrom 1995, 6, 1175–1182;

    Article  CAS  Google Scholar 

  17. Sproch, N.; Kruger, T. L. Noncovalent interactions of crown ethers with cytochrome c using electrospray mass spectrometry. Proceedings of the 41st ASMS Conference; San Francisco, CA 1993, pp 904a–904b.

  18. Bosch, E.; Bou, P.; Allemann, H.; Rosès, M. Retention of ionizable compounds on HPLC. pH scale in methanol-water and the pK and pH values of buffers. Anal. Chem. 1996, 68, 3651–3657.

    Article  CAS  Google Scholar 

  19. Fink, A. L.; Calciano, L. J.; Goto, Y.; Kurotsu, T.; Palleros, D. R. Classification of acid denaturation of proteins: Intermediates and unfolded states. Biochemistry. 1994, 33, 12504–12511.

    Article  CAS  Google Scholar 

  20. Mattice, W. L.; Harrison, W. H. Estimation of the Circular Dichroism Exhibited by Statistical Coils of Poly(L-Alanine) and Unionized Poly(L-Lysine) in Water. Biopolymers. 1975, 14, 2025–2033.

    Article  CAS  Google Scholar 

  21. Buck, M. Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys. 1998, 31, 297–355.

    Article  CAS  Google Scholar 

  22. Hirota-Nakaoka, N.; Goto, Y. Alcohol-induced denaturation of â-Lactoglobulin: A close correlation to the alcohol-induced α-helix formation of melittin. Bioorg. Med. Chem. 1999, 7, 67–73.

    Article  CAS  Google Scholar 

  23. Bushnell, G. W.; Louie, G. V.; Brayer, G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 1990, 214, 585.

    Article  CAS  Google Scholar 

  24. Konermann, L.; Douglas, D. J. Acid-induced unfolding of cytochrome c at different methanol concentrations: electrospray ionization mass spectrometry specifically monitors changes in tertiary structure. Biochemistry. 1997, 36, 12296–12302.

    Article  CAS  Google Scholar 

  25. Suzumura, A.; Paul, D.; Sugimoto, H.; Shinoda, S.; Julian, R. R.; Beauchamp, J. L.; Teraoka, J.; Tsukube, H. Cytochrome c-crown ether complexes as supramolecular catalysts: Cold-active synzymes for asymmetric sulfoxide oxidation in methanol. Inorg. Chem. 2005, 44, 904–910.

    Article  CAS  Google Scholar 

  26. Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. Structure of ubiquitin refined at 1.8 A resolution. J. Mol. Biol. 1987, 194, 531–544.

    Article  CAS  Google Scholar 

  27. Brutscher, B.; Bruschweiler, R.; Ernst, R. R. Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by 1H, 13C, and 15N nuclear magnetic resonance spectroscopy. Biochemistry. 1997, 36, 13043–13053.

    Article  CAS  Google Scholar 

  28. Ecker, D. J.; Butt, T. R.; Marsh, J.; Sternberg, E.; Shatzman, A.; Dixon, J. S.; Weber, P. L.; Crooke, S. T. Ubiquitin functions studied by disulfide engineering. J. Biol. Chem. 1989, 264, 1887–1893.

    CAS  Google Scholar 

  29. Hoerner, J. K.; Xiao, H.; Kaltashov, I. A. Structural and dynamic characteristics of a partially folded state of ubiquitin revealed by hydrogen exchange mass spectrometry. Biochemistry. 2005, 44, 11286–11294.

    Article  CAS  Google Scholar 

  30. Dill, K. A.; Shortle, D. Denatured states of proteins. Annu. Rev. Biochem. 1991, 60, 795–825.

    Article  CAS  Google Scholar 

  31. Mohimen, A.; Dobo, A.; Hoerner, J. K.; Kaltashov, I. A. A chemometric approach to detection and characterization of multiple protein conformers in solution using electrospray ionization mass spectrometry. Anal. Chem. 2003, 75, 4139–4147.

    Article  CAS  Google Scholar 

  32. Wang, F.; Polavarapu, P. L. Conformational analysis of melittin in solution phase: Vibrational circular dichroism study. Biopolymers. 2003, 70, 614–619.

    Article  CAS  Google Scholar 

  33. Hirota, N.; Mizuno, K.; Goto, Y. Group additive contributions to the alcohol-induced α-helix formation of melittin: Implication for the mechanism of the alcohol effects on proteins. J. Mol. Biol. 1998, 275, 365–378.

    Article  CAS  Google Scholar 

  34. Bazzo, R.; Tappin, M. J.; Pastore, A.; Harvey, T. S.; Carver, J. A.; Campbell, I. D. The structure of melittin: A 1H-NMR study in methanol. Eur. J. Biochem. 1988, 173, 139–146.

    Article  CAS  Google Scholar 

  35. Eisenberg, D.; Gribskov, M.; Terwilliger, T. C. PDB ID: 2MLT; unpublished.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan R. Julian.

Additional information

Published online June 12, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ly, T., Julian, R.R. Using ESI-MS to probe protein structure by site-specific noncovalent attachment of 18-crown-6. The official journal of The American Society for Mass Spectrometry 17, 1209–1215 (2006). https://doi.org/10.1016/j.jasms.2006.05.007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2006.05.007

Navigation