Skip to main content
Log in

Ion source-dependent performance of 4-vinylpyridine, iodoacetamide, and N-maleoyl derivatives for the detection of cysteine-containing peptides in complex proteomics

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cysteine is unique among the proteinogenic amino acids due to its ability to form disulfide bonds. While this property is of vital importance for protein structures and biological processes, it causes difficulties for the mass spectrometric identification of cysteine-containing peptides. A common approach to overcome these problems in bottom-up proteomics is the reduction and covalent modification of sulfhydryl groups prior to enzymatic digestion. In this study, established alkylating agents and N-maleoyl amino acids with variable hydrophobicity were characterized with respect to a variety of relevant parameters and subsequently evaluated in a large-scale analysis using different ion sources. Depending on the compound, the ion source had a profound impact on the relative and absolute identification of cysteine-containing peptides. The best results were obtained by derivatization of the cysteine residues with 4-vinylpyridine and subsequent matrix-assisted laser desorption ionization (MALDI). Modification with 4-vinylpyridine increased the number of cysteine-containing peptides identified with any other compound using LC-MALDI/MS at least by a factor of 2. This experimental observation is mirrored by differences in the gas-phase basicities, which were computed for methyl thiolate derivatives of the compounds using density functional theory. With electrospray ionization (ESI), complementary use of reagents from three different compound classes, e.g., iodoacetamide, 4-vinylpyridine, and N-maleoyl beta-alanine, was beneficial compared to the application of a single reagent.

Cysteine-containing peptides are underrepresented in standard large scale proteomic experiments. However, deliberate matching of alkylating agent and ion source can help to increase identification rates, as outlined by characterization and validation of various reagents for cysteine-derivatization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, Van Eyk JE (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol. doi:10.1002/0471142727.mb1025s88, Chapter 10: Unit 10.25

    Google Scholar 

  2. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68(5):850–858

    Article  CAS  Google Scholar 

  3. Nielsen ML, Vermeulen M, Bonaldi T, Cox J, Moroder L, Mann M (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5(6):459–460. doi:10.1038/nmeth0608-459

    Article  CAS  Google Scholar 

  4. Rehulkova H, Marchetti-Deschmann M, Pittenauer E, Allmaier G, Rehulka P (2009) Improved identification of hordeins by cysteine alkylation with 2-bromoethylamine, SDS-PAGE and subsequent in-gel tryptic digestion. J Mass Spectrom 44(11):1613–1621. doi:10.1002/jms.1675

    Article  CAS  Google Scholar 

  5. Frahm JL, Bori ID, Comins DL, Hawkridge AM, Muddiman DC (2007) Achieving augmented limits of detection for peptides with hydrophobic alkyl tags. Anal Chem 79(11):3989–3995. doi:10.1021/ac070558q

    Article  CAS  Google Scholar 

  6. Guan X, Hoffman B, Dwivedi C, Matthees DP (2003) A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. J Pharm Biomed Anal 31(2):251–261. doi:10.1016/S0731-7085(02)00594-0

    Article  CAS  Google Scholar 

  7. Sechi S, Chait BT (1998) Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Anal Chem 70(24):5150–5158. doi:10.1021/ac9806005

    Article  CAS  Google Scholar 

  8. Xu K, Zhang Y, Tang B, Laskin J, Roach PJ, Chen H (2010) Study of highly selective and efficient thiol derivatization using selenium reagents by mass spectrometry. Anal Chem 82(16):6926–6932. doi:10.1021/ac1011602

    Article  CAS  Google Scholar 

  9. Guo Y, Chen L, Yang L, Wang Q (2008) Counting sulfhydryls and disulfide bonds in peptides and proteins using mercurial ions as an MS-tag. J Am Soc Mass Spectrom 19(8):1108–1113. doi:10.1016/j.jasms.2008.05.005

    Article  CAS  Google Scholar 

  10. Wang Z, Zhang Y, Zhang H, Harrington PB, Chen H (2012) Fast and selective modification of thiol proteins/peptides by N-(phenylseleno)phthalimide. J Am Soc Mass Spectrom 23(3):520–529. doi:10.1007/s13361-011-0317-3

    Article  CAS  Google Scholar 

  11. Lundblad RL (2014) Chemical reagents for protein modification, 4th edn. CRC, Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  12. Boja ES, Fales HM (2001) Overalkylation of a protein digest with iodoacetamide. Anal Chem 73(15):3576–3582. doi:10.1021/ac0103423

    Article  CAS  Google Scholar 

  13. Brewer CF, Riehm JP (1967) Evidence for possible nonspecific reactions between N-ethylmaleimide and proteins. Anal Biochem 18(2):248–255. doi:10.1016/0003-2697(67)90007-3

    Article  CAS  Google Scholar 

  14. Gregory JD (1955) The stability of N-ethylmaleimide and its reaction with sulfhydryl groups. J Am Chem Soc 77(14):3922–3923. doi:10.1021/Ja01619a073

    Article  CAS  Google Scholar 

  15. Rich DH, Gesellchen PD, Tong A, Cheung A, Buckner CK (1975) Alkylating derivatives of amino-acids and peptides—synthesis of N-maleoylamino acids, [1-(N-maleoylglycyl)cysteinyl]oxytocin, and [1-(N-maleoyl-11-aminoundecanoyl)cysteinyl]oxytocin—effects on vasopressin-stimulated water-loss from isolated toad bladder. J Med Chem 18(10):1004–1010. doi:10.1021/Jm00244a011

    Article  CAS  Google Scholar 

  16. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  17. Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics. The MM3 force field for hydrocarbons. 1. J Am Chem Soc 111(23):8551–8566. doi:10.1021/Ja00205a001

    Article  CAS  Google Scholar 

  18. Fifen JJ, Dhaouadi Z, Nsangou M (2014) Revision of the thermodynamics of the proton in gas phase. J Phys Chem A 118(46):11090–11097. doi:10.1021/Jp508968z

    Article  CAS  Google Scholar 

  19. Bouchoux G (2012) Gas phase basicities of polyfunctional molecules. Part 3: amino acids. Mass Spectrom Rev 31(3):391–435. doi:10.1002/mas.20349

    Article  CAS  Google Scholar 

  20. Friedman M, Krull LH, Cavins JF (1970) The chromatographic determination of cystine and cysteine residues in proteins as s-beta-(4-pyridylethyl)cysteine. J Biol Chem 245(15):3868–3871

    CAS  Google Scholar 

  21. Ren DY, Julka S, Inerowicz HD, Regnier FE (2004) Enrichment of cysteine-containing peptides from tryptic digests using a quaternary amine tag. Anal Chem 76(15):4522–4530. doi:10.1021/Ac0354645

    Article  CAS  Google Scholar 

  22. Matsui S, Aida H (1978) Hydrolysis of some N-alkylmaleimides. J Chem Soc Perkin Trans 2(12):1277–1280. doi:10.1039/P29780001277

    Article  Google Scholar 

  23. Smyth DG, Blumenfeld OO, Konigsberg W (1964) Reactions of N-ethylmaleimide with peptides and amino acids. Biochem J 91(3):589–595. doi:10.1042/bj0910589

    Article  CAS  Google Scholar 

  24. Gorin G, Matic PA, Doughty G (1966) Kinetics of reaction of N-ethylmaleimide with cysteine and some congeners. Arch Biochem Biophys 115(3):593–597. doi:10.1016/0003-9861(66)90079-8

    Article  CAS  Google Scholar 

  25. Lutolf MP, Tirelli N, Cerritelli S, Cavalli L, Hubbell JA (2001) Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids. Bioconjug Chem 12(6):1051–1056. doi:10.1021/bc015519e

    Article  CAS  Google Scholar 

  26. Ueland PM, Skotland T, Doskeland SO, Flatmark T (1978) Adenosine 3′-5′-monophosphate-adenosine binding-protein from mouse-liver—some physicochemical properties. Biochim Biophys Acta 533(1):57–65. doi:10.1016/0005-2795(78)90547-0

    Article  CAS  Google Scholar 

  27. Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science, Sausalito

    Google Scholar 

  28. Rogers LK, Leinweber BL, Smith CV (2006) Detection of reversible protein thiol modifications in tissues. Anal Biochem 358(2):171–184. doi:10.1016/j.ab.2006.08.020

    Article  CAS  Google Scholar 

  29. Nishikaze T, Takayama M (2006) Cooperative effect of factors governing molecular ion yields in desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 20(3):376–382. doi:10.1002/rcm.2316

    Article  CAS  Google Scholar 

  30. Nishikaze T, Takayama M (2007) Study of factors governing negative molecular ion yields of amino acid and peptide in FAB, MALDI and ESI mass spectrometry. Int J Mass Spectrom 268(1):47–59. doi:10.1016/j.ijms.2007.08.004

    Article  CAS  Google Scholar 

  31. Paulech J, Solis N, Cordwell SJ (2013) Characterization of reaction conditions providing rapid and specific cysteine alkylation for peptide-based mass spectrometry. Biochim Biophys Acta 1834(1):372–379. doi:10.1016/j.bbapap.2012.08.002

    Article  CAS  Google Scholar 

  32. Kruger R, Hung CW, Edelson-Averbukh M, Lehmann WD (2005) Iodoacetamide-alkylated methionine can mimic neutral loss of phosphoric acid from phosphopeptides as exemplified by nano-electrospray ionization quadrupole time-of-flight parent ion scanning. Rapid Commun Mass Spectrom 19(12):1709–1716. doi:10.1002/rcm.1976

    Article  Google Scholar 

  33. Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17(8):1232–1239. doi:10.1093/oxfordjournals.molbev.a026406

    Article  CAS  Google Scholar 

  34. Karantza V (2011) Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30(2):127–138. doi:10.1038/onc.2010.456

    Article  CAS  Google Scholar 

  35. Liao PC, Allison J (1995) Enhanced detection of peptides in matrix-assisted laser-desorption ionization mass-spectrometry through the use of charge-localized derivatives. J Mass Spectrom 30(3):511–512. doi:10.1002/jms.1190300318

    Article  CAS  Google Scholar 

  36. Mirzaei H, Regnier F (2006) Enhancing electrospray ionization efficiency of peptides by derivatization. Anal Chem 78(12):4175–4183. doi:10.1021/ac0602266

    Article  CAS  Google Scholar 

  37. Williams DK Jr, Comins DL, Whitten JL, Muddiman DC (2009) Evaluation of the ALiPHAT method for PC-IDMS and correlation of limits-of-detection with nonpolar surface area. J Am Soc Mass Spectrom 20(11):2006–2012. doi:10.1016/j.jasms.2009.07.019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Friedrich Mandel and the team of the Agilent Demolab Waldbronn for their kind support during the Agilent Mass Spec Research Summer 2014. We are most thankful to Prof. Dr. Karl Gademann and to Prof. Dr. Bernd F. Straub for hosting us in their groups. Jaguar licenses were provided by the bwgrid. We gratefully acknowledge the financial support from the German Research Foundation (DFG grant BE 5492/1-1), the German Cancer Research Center, the Dietmar Hopp Stiftung, and the Boehringer Ingelheim Fonds.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Roesli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadler, W., Berg, R., Walch, P. et al. Ion source-dependent performance of 4-vinylpyridine, iodoacetamide, and N-maleoyl derivatives for the detection of cysteine-containing peptides in complex proteomics. Anal Bioanal Chem 408, 2055–2067 (2016). https://doi.org/10.1007/s00216-015-9113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9113-4

Keywords

Navigation