Skip to main content
Log in

Electrospray ionization mass spectrometry studies of noncovalent myosin VI complexes reveal a new specific calmodulin binding site

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Among the myosin superfamily, myosin VI differs from all others by a reverse directionality and a particular motility. Little structural information is available for myosin VI. It is known that it binds one calmodulin (CaM) by means of a single “IQ motif” and that myosin VI contains a specific insert located at the junction between the motor domain (MD) and the lever arm, likely to play a critical role for the unusual motility previously observed. Electrospray ionization mass spectrometry (MS) was used to determine the CaM and Ca2+ stoichiometries in several myosin VI constructs. In particular, the experimental conditions required for the observation of multiprotein/Ca2+ noncovalent assemblies are detailed for two truncated MD constructs (less than 20 kDa) and for three full MD constructs (more than 90 KDa). The specificity of the detected stoichiometries is discussed for each construct and the resolving power of Time of Flight mass spectrometry is stressed, in particular for the detection of metal ions binding to high molecular weight complexes. MS reveals a new CaM binding site for myosin VI and highlights a different behavior for the five myosin VI constructs versus Ca2+ binding. In addition to these stoichiometry based experiments, gas-phase dissociation analyses on intact complexes are described. They reveal that Ca2+ transfer between protein partners occurs during the dissociation process for one construct with a full MD. Charge-transfer and dissociation behavior has allowed to draw structural assumptions for the interaction of the MD with the CaM N-terminal lobe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, J. P.; Titus, M. A. Myosins: Matching functions with motors. Curr. Opin. Cell Biol. 1998, 10, 80–86.

    Article  CAS  Google Scholar 

  2. Mermall, V.; Post, P. L.; Mooseker, M. S. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 1998, 279, 527–533.

    Article  CAS  Google Scholar 

  3. http://www.mrc-lmb.cam.ac.uk/myosin/myosin.html.

  4. Houdusse, A.; Silver, M.; Cohen, C. A model of Ca(2+)-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Structure 1996, 4, 1475–1490.

    Article  CAS  Google Scholar 

  5. Purcell, T. J.; Morris, C.; Spudich, J. A.; Sweeney, H. L. Role of the lever arm in the processive stepping of myosin V. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 14159–14164.

    Article  CAS  Google Scholar 

  6. Wells, A. L.; Lin, A. W.; Chen, L. Q.; Safer, D.; Cain, S. M.; Hasson, T.; Carragher, B. O.; Milligan, R. A.; Sweeney, H. L. Myosin VI is an actin-based motor that moves backwards. Nature 1999, 401, 505–508.

    Article  CAS  Google Scholar 

  7. Rock, R. S.; Rice, S. E.; Wells, A. L.; Purcell, T. J.; Spudich, J. A.; Sweeney, H. L. Myosin VI is a processive motor with a large step size. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 13655–13659.

    Article  CAS  Google Scholar 

  8. Heck, A. J.; Van Den. Heuvel, R. H. Investigation of intact protein complexes by mass spectrometry. Mass. Spectrom. Rev. 2004, 23, 368–389.

    Article  CAS  Google Scholar 

  9. Loo, J. A. Electrospray ionization mass spectrometry: A technology for studying noncovalent macromolecular complexes. Int. J. Mass. Spectrom. 2000, 200, 175–186.

    Article  CAS  Google Scholar 

  10. Cole, R. B. Focus on noncovalent interactions. J. Am. Soc. Mass. Spectrom. 2003, 14, 417–418.

    Article  Google Scholar 

  11. Wu, Q.; Gao, J.; Smith, R. D. Carbonic anhydrase-inhibitor binding: From solution to the gas phase. J. Am. Chem. Soc. 1997, 1157–1158.

  12. Rogniaux, H.; Van Dorsselaer, A.; Barth, P.; Biellmann, J. F.; Barbanton, J.; van Zandt, M.; Chevrier, B.; Howard, E.; Mitschler, A.; Potier, N.; Urzhumtseva, L.; Moras, D.; Podjarny, A. Binding of aldose reductase inhibitors: Correlation of crystallographic and mass spectrometric studies. J. Am. Soc. Mass. Spectrom. 1999, 10, 635–647.

    Article  CAS  Google Scholar 

  13. Schmidt, A.; Karas, M. The influence of electrostatic interactions on the detection of heme-globin complexes in ESI-MS. J. Am. Soc. Mass. Spectrom. 2001, 12, 1092–1098.

    Article  CAS  Google Scholar 

  14. Rostom, A.; Fucini, P.; Benjamin, D. R.; Juenemann, R.; Nierhaus, K.; Hartl, F. U.; Dobson, C. M.; Robinson, C. V. Detection and selective dissociation of intact ribosomes in a mass spectrometer. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5185–5190.

    Article  CAS  Google Scholar 

  15. Rostom, A. A.; Robinson, C. V. Disassembly of intact multiprotein complexes in the gas phase. Curr. Opin. Struct. Biol. 1999, 9, 135–141.

    Article  CAS  Google Scholar 

  16. Pinkse, M. W.; Maier, C. S.; Kim, J. I.; Oh, B. H.; Heck, A. J. Macromolecular assembly of Helicobacter pylori urease investigated by mass spectrometry. J. Mass. Spectrom. 2003, 38, 315–320.

    Article  CAS  Google Scholar 

  17. McCammon, M. G.; Hernandez, H.; Sobott, F.; Robinson, C. V. Tandem mass spectrometry defines the stoichiometry and quaternary structural arrangement of tryptophan molecules in the multiprotein complex TRAP. J. Am. Chem. Soc. 2004, 126, 5950–5951.

    Article  CAS  Google Scholar 

  18. McCammon, M. G.; Scott, D. J.; Keetch, C. A.; Greene, L. H.; Purkey, H. E.; Petrassi, H. M.; Kelly, J. W.; Robinson, C. V. Screening transthyretin amyloid fibril inhibitors: Characterization of novel multiprotein, multiligand complexes by mass spectrometry. Structure 2002, 10, 851–863.

    Article  CAS  Google Scholar 

  19. Rogniaux, H.; Sanglier, S.; Strupat, K.; Azza, S.; Roitel, O.; Ball, V.; Tritsch, D.; Branlant, G.; Van Dorsselaer, A. Mass spectrometry as a novel approach to probe cooperativity in multimeric enzymatic systems. Anal. Biochem. 2001, 291, 48–61.

    Article  CAS  Google Scholar 

  20. Loo, J. A. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass. Spectrom. Rev. 1997, 16, 1–23.

    Article  CAS  Google Scholar 

  21. Jørgensen, T. J. D.; Roepstorff, P. Direct determination of solution binding constants for noncovalent complexes between bacterial cell wall peptide analogs and Vancomycin group antibiotics by electrospray ionization mass spectrometry. Anal. Chem. 1998, 70, 4427–4432.

    Article  Google Scholar 

  22. Daniel, J. J.; McCombie, G.; Wendt, S.; Zenobi, R. Mass spectrometric determination of association constants of adenylate kinase with two noncovalent inhibitors. J. Am. Soc. Mass. Spectrom. 2003, 14, 442–448.

    Article  CAS  Google Scholar 

  23. Zhu, M. M.; Rempel, D. L.; Du, Z.; Gross, M. L. Quantification of protein-ligand interactions by mass spectrometry, titration, and H/D exchange: PLIMSTEX. J. Am. Chem. Soc. 2003, 125, 5252–5253.

    Article  CAS  Google Scholar 

  24. Zhu, M. M.; Rempel, D. L.; Gross, M. L. Modeling data from titration, amide H/D exchange, and mass spectrometry to obtain protein-ligand binding constants. J. Am. Soc. Mass. Spectrom. 2004, 15, 388–397.

    Article  CAS  Google Scholar 

  25. Hill, T. J.; Lafitte, D.; Wallace, J. I.; Cooper, H. J.; Tsvetkov, P. O.; Derrick, P. J. Calmodulin-peptide interactions: Apocalmodulin binding to the myosin light chain kinase target-site. Biochemistry 2000, 39, 7284–7290.

    Article  CAS  Google Scholar 

  26. Nousiainen, M.; Derrick, P. J.; Lafitte, D.; Vainiotalo, P. Relative affinity constants by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry: Calmodulin binding to peptide analogs of myosin light chain kinase. Biophys. J. 2003, 85, 491–500.

    Article  CAS  Google Scholar 

  27. Sanglier, S.; Bourguet, W.; Germain, P.; Chavant, V.; Moras, D.; Gronemeyer, H.; Potier, N.; Van Dorsselaer, A. Monitoring ligand-mediated nuclear receptor-coregulator interactions by noncovalent mass spectrometry. Eur. J. Biochem. 2004, 271, 4958–4967.

    Article  CAS  Google Scholar 

  28. Benesch, J. L.; Sobott, F.; Robinson, C. V. Thermal dissociation of multimeric protein complexes by using nanoelectrospray mass spectrometry. Anal. Chem. 2003, 75, 2208–2214.

    Article  CAS  Google Scholar 

  29. van Berkel, W. J.; van den Heuvel, R. H.; Versluis, C.; Heck, A. J. Detection of intact mega-dalton protein assemblies of vanillyl-alcohol oxidase by mass spectrometry. Protein Sci. 2000, 9, 435–439.

    Article  Google Scholar 

  30. Tito, M. A.; Tars, K.; Valegard, K.; Hajdu, J.; Robinson, C. V. Electrospray time-of-flight mass spectrometry of the intact MS2 virus capsid. J. Am. Chem. Soc. 2000, 122, 3550–3551.

    Article  CAS  Google Scholar 

  31. Sanglier, S.; Leize, E.; Van Dorsselaer, A.; Zal, F. Comparative ESI-MS study of approximately 2.2 MDa native hemocyanins from deep-sea and shore crabs: From protein oligomeric state to biotope. J. Am. Soc. Mass. Spectrom. 2003, 14, 419–429.

    Article  CAS  Google Scholar 

  32. van den Heuvel, R. H.; Heck, A. J. Native protein mass spectrometry: From intact oligomers to functional machineries. Curr. Opin. Chem. Biol. 2004, 8, 519–526.

    Article  Google Scholar 

  33. Bahloul, A.; Chevreux, G.; Wells, A. L.; Martin, D.; Nolt, J.; Yang, Z.; Chen, L. Q.; Potier, N.; Van Dorsselaer, A.; Rosenfeld, S.; Houdusse, A.; Sweeney, H. L. The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4787–4792.

    Article  CAS  Google Scholar 

  34. Sweeney, H. L.; Rosenfeld, S. S.; Brown, F.; Faust, L.; Smith, J.; Xing, J.; Stein, L. A.; Sellers, J. R. Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J. Biol. Chem. 1998, 273, 6262–6270.

    Article  CAS  Google Scholar 

  35. Morris, C. A.; Wells, A. L.; Yang, Z.; Chen, L. Q.; Baldacchino, C. V.; Sweeney, H. L. Calcium functionally uncouples the heads of myosin VI. J. Biol. Chem. 2003, 278, 23324–23330.

    Article  CAS  Google Scholar 

  36. Chernushevich, I. V.; Thomson, B. A. Collisional cooling of large ions in electrospray mass spectrometry. Anal. Chem. 2004, 76, 1754–1760.

    Article  CAS  Google Scholar 

  37. Schmidt, A.; Bahr, U.; Karas, M. Influence of pressure in the first pumping stage on analyte desolvation and fragmentation in nano-ESI MS. Anal. Chem. 2001, 73, 6040–6046.

    Article  CAS  Google Scholar 

  38. Sanglier, S.; Ramstrom, H.; Haiech, J.; Leize, E.; Van Dorsselaer, A. Electrospray ionization mass spectrometry analysis revealed a 310 kDa noncovalent hexamer of HPr kinase/phosphatase from Bacillus subtilis. Int. J. Mass. Spectrom. 2002, 219, 681–696.

    Article  CAS  Google Scholar 

  39. Rhoads, A. R.; Friedberg, F. Sequence motifs for calmodulin recognition. Faseb. J. 1997, 11, 331–340.

    CAS  Google Scholar 

  40. Martin, S. R.; Masino, L.; Bayley, P. M. Enhancement by Mg2+ of domain specificity in Ca2+-dependent interactions of calmodulin with target sequences. Protein Sci. 2000, 9, 2477–2488.

    Article  CAS  Google Scholar 

  41. Bayley, P. M.; Findlay, W. A.; Martin, S. R. Target recognition by calmodulin: Dissecting the kinetics and affinity of interaction using short peptide sequences. Protein Sci. 1996, 5, 1215–1228.

    Article  CAS  Google Scholar 

  42. Potier, N.; Billas, I. M.; Steinmetz, A.; Schaeffer, C.; van Dorsselaer, A.; Moras, D.; Renaud, J. P. Using nondenaturing mass spectrometry to detect fortuitous ligands in orphan nuclear receptors. Protein Sci. 2003, 12, 725–733.

    Article  CAS  Google Scholar 

  43. Chen, X.; Schauder, S.; Potier, N.; Van Dorsselaer, A.; Pelczer, I.; Bassler, B. L.; Hughson, F. M. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 2002, 415, 545–549.

    Article  CAS  Google Scholar 

  44. de Urquiza, A. M.; Liu, S.; Sjoberg, M.; Zetterstrom, R. H.; Griffiths, W.; Sjovall, J.; Perlmann, T. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 2000, 290, 2140–2144.

    Article  Google Scholar 

  45. Houdusse, A.; Cohen, C. Target sequence recognition by the calmodulin superfamily: Implications from light chain binding to the regulatory domain of scallop myosin. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 10644–10647.

    Article  CAS  Google Scholar 

  46. Veenstra, T. D.; Tomlinson, A. J.; Benson, L.; Kumar, R.; Naylor, S. Low temperature aqueous electrospray ionization mass spectrometry of noncovalent complexes. J. Am. Soc. Mass. Spectrom. 1998, 9, 580–584.

    Article  CAS  Google Scholar 

  47. Sobott, F.; McCammon, M. G.; Robinson, C. V. Gas-phase dissociation pathways of a tetrameric protein complex. Int. J. Mass. Spectrom. 2003, 230, 193–200.

    Article  CAS  Google Scholar 

  48. Nemirovskiy, O.; Ramanathan, R.; Gross, M. L. Investigation of calcium-induced, noncovalent association of calmodulin with melittin by electrospray ionization mass spectrometry. J. Am. Soc. Mass. Spectrom. 1997, 8, 809–812.

    Article  CAS  Google Scholar 

  49. Schwartz, B. L.; Bruce, J. E.; Anderson, G. A.; Hofstadler, S. A.; Rockwood, A. L.; Smith, R. D. Dissociation of tetrameric ions of noncovalent Streptavidin complexes formed by electrospray ionization. J. Am. Soc. Mass. Spectrom. 1995, 6, 459–465.

    Article  CAS  Google Scholar 

  50. Felitsyn, N.; Kitova, E. N.; Klassen, J. S. Thermal decomposition of a gaseous multiprotein complex studied by blackbody infrared radiative dissociation. Investigating the origin of the asymmetric dissociation behavior. Anal. Chem. 2001, 73, 4647–4661.

    Article  CAS  Google Scholar 

  51. Felitsyn, N.; Kitova, E. N.; Klassen, J. S. Thermal dissociation of the protein homodimer ecotin in the gas phase. J. Am. Soc. Mass. Spectrom. 2002, 13, 1432–1442.

    Article  CAS  Google Scholar 

  52. Versluis, C.; van der Staaij, A.; Stokvis, E.; Heck, A. J.; de Craene, B. Metastable ion formation and disparate charge separation in the gas-phase dissection of protein assemblies studied by orthogonal time-of-flight mass spectrometry. J. Am. Soc. Mass. Spectrom. 2001, 12, 329–336.

    Article  CAS  Google Scholar 

  53. Jurchen, J. C.; Williams, E. R. Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. J. Am. Chem. Soc. 2003, 125, 2817–2826.

    Article  CAS  Google Scholar 

  54. Jurchen, J. C.; Garcia, D. E.; Williams, E. R. Further studies on the origins of asymmetric charge partitioning in protein homodimers. J. Am. Soc. Mass. Spectrom. 2004, 15, 1408–1415.

    Article  CAS  Google Scholar 

  55. Sobott, F.; Robinson, C. V. Characterizing electrosprayed biomolecules using tandem-MS—the noncovalent GroEL chaperonin assembly. Int. J. Mass. Spectrom. 2004, 236, 25–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published online June 24, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevreux, G., Potier, N., Van Dorsselaer, A. et al. Electrospray ionization mass spectrometry studies of noncovalent myosin VI complexes reveal a new specific calmodulin binding site. J Am Soc Mass Spectrom 16, 1367–1376 (2005). https://doi.org/10.1016/j.jasms.2005.03.023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2005.03.023

Keywords

Navigation