Skip to main content
Log in

Inferring the dynamics of a spatial epidemic from time-series data

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Spatial interactions are key determinants in the dynamics of many epidemiological and ecological systems; therefore it is important to use spatio-temporal models to estimate essential parameters. However, spatially-explicit data sets are rarely available; moreover, fitting spatially-explicit models to such data can be technically demanding and computationally intensive. Thus non-spatial models are often used to estimate parameters from temporal data. We introduce a method for fitting models to temporal data in order to estimate parameters which characterise spatial epidemics. The method uses semi-spatial models and pair approximation to take explicit account of spatial clustering of disease without requiring spatial data. The approach is demonstrated for data from experiments with plant populations invaded by a common soilborne fungus, Rhizoctonia solani. Model inferences concerning the number of sources of disease and primary and secondary infections are tested against independent measures from spatio-temporal data. The applicability of the method to a wide range of host-pathogen systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolker, B. and S. W. Pacala (1997). Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52, 179–197.

    Article  MATH  Google Scholar 

  • Bonabeau, E., L. Toubiana and A. Flahault (1998). The geographical spread of influenza. Philos. R. Soc. Lond. B Biol. 265, 2421–2425.

    Article  Google Scholar 

  • Campbell, C. L. and L. Madden (1990). Introduction to Plant Disease Epidemiology, New York: Wiley-Interscience.

    Google Scholar 

  • Clark, J. S. et al. (2001). Ecological forecast: an emerging imperative. Science 293, 657–660.

    Article  Google Scholar 

  • Dieckmann, U., R. Law and J. A. J. Metz (Eds), (2000). The Geometry of Ecological Interactions: Simplifying Spatial Complexity, Cambridge: Cambridge University Press.

    Google Scholar 

  • Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns, London: Academic Press.

    MATH  Google Scholar 

  • Diggle, P. J. (1996). Time Series: A Biostatistical Introduction, Oxford: Oxford Science Publications.

    Google Scholar 

  • Earn, D. J. D., J. Dushoff and S. A. Levin (2002). Ecology and evolution of the flu. Trends Ecol. Evol. 17, 334–340.

    Article  Google Scholar 

  • Ellner, S. P., A. Sasaki, Y. Haraguchi and H. Matsuda (1998). Speed of invasion in population models: pair-edge approximation. J. Math. Biol. 36, 469–484.

    Article  MathSciNet  MATH  Google Scholar 

  • Everitt, B. S. (1998). Dictionary of Statistics, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Ferguson, N. M., A. C. Donelly and R. M. Anderson (2001). The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Nature 292, 1155–1160.

    Google Scholar 

  • Filipe, J. A. N. and G. J. Gibson (1998). Studying and approximating spatio-temporal models for epidemic spread and control. Philos. Trans. R. Soc. B 353, 2153–2162.

    Article  Google Scholar 

  • Filipe, J. A. N. and G. J. Gibson (2001). Comparing approximations to spatio-temporal models for epidemics with local spread. B. Math. Biol. 63, 603–624.

    Article  Google Scholar 

  • Filipe, J. A. N. and M. M. Maule (2003a). Analytical methods for predicting the behaviour of population models with general spatial interactions. Math. Biosci. 183, 15–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Filipe, J. A. N. and M. M. Maule (2003b). Effects of dispersal mechanisms on spatio-temporal development of epidemics. J. Theor. Biol. (in press).

  • Freckleton, R. P. (1999). Biological control as a learning process. Trends Ecol. Evol. 17, 263–264.

    Google Scholar 

  • Freeman, E. A. and E. D. Ford (2002). Effects of data quality on analysis of ecological pattern using the K(d) statistical function. Ecology 83, 35–46.

    Google Scholar 

  • Gibson, G. J. (1997). Investigating mechanisms of spatio-temporal epidemic spread using stochastic models. Phytopathology 87, 139–146.

    Google Scholar 

  • Gibson, G. J., C. A. Gilligan and A. Kleczkowski (1999). Predicting variability in biological control of a plant-pathogen system using stochastic models. Philos. R. Soc. Lond. B Biol. 266, 1743.

    Article  Google Scholar 

  • Gilligan, C. A. (1985). Probability models for host infection by soilborne fungi. Phytopathology 75, 61–67.

    Google Scholar 

  • Gilligan, C. A. (1990a). Antagonistic interactions involving plant pathogens—fitting and analysis of models to nonmonotonic curves for population and disease dynamics. New Phytol. 115, 649–665.

    Article  Google Scholar 

  • Gilligan, C. A. (1990b). Comparison of disease progress curves. New Phytol. 115, 223–242.

    Article  Google Scholar 

  • Gilligan, C. A. (2002). An epidemiological framework for disease management. Adv. Bot. Res. 38, 1–64.

    Article  Google Scholar 

  • Gilligan, C. A. and A. Kleczkowski (1997). Population dynamics of botanical epidemics involving primary and secondary infection. Philos. Trans. R. Soc. B 352, 591–608.

    Article  Google Scholar 

  • Gottwald, T. R., R. Hughes, J. H. Graham, X. Sun and T. Riley (2001). The citrus canker epidemic in florida: the scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91.

  • Grenfell, B. T., O. N. Bjornstad and J. Kappey (2001). Travelling waves and spatial hierarchies in measles epidemics. Nature 414, 716–723.

    Article  Google Scholar 

  • Hastings, A. (1996). Models of spatial spread: a synthesis. Biol. Conserv. 78, 143–148.

    Article  Google Scholar 

  • Hiebeler, D. (2000). Populations of fragmented landscapes with spatially structured heterogeneities. Ecology 81, 1629–1641.

    Article  Google Scholar 

  • Jeger, M. J. (Ed.), (1989). Spatial Components of Plant Disease Epidemics, Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Keeling, M. J. (1999). The effects of local spatial structure on epidemiological invasion. Philos. R. Soc. Lond. B Biol. 266, 859–867.

    Article  Google Scholar 

  • Keeling, M. J. et al. (2001). Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape. Science 294, 813–817.

    Article  Google Scholar 

  • Kleczkowski, A., D. J. Bailey and C. A. Gilligan (1996). Dynamically generated variability in plant-pathogen systems with biological control. Philos. R. Soc. Lond. B Biol. 263, 777–783.

    Google Scholar 

  • Leonard, K. J. and W. E. Fry (Eds), (1986). Plant Disease Epidemiology. Vol. 1: Population Dynamics and Management, New York: Macmillan Publishing Company.

    Google Scholar 

  • Levin, S. A. and R. Durrett (1996). From individuals to epidemics. Philos. Trans. R. Soc. B 351, 1615–1621.

    Google Scholar 

  • Lewis, M. A. and S. Pacala (2000). Modelling and analysis of stochastic invasion processes. J. Math. Biol. 41, 378–429.

    MathSciNet  Google Scholar 

  • Ljung, G. M. and G. E. P. Box (1978). On a measure of lack of fit in time series models. Biometrika 65, 297–303.

    Article  MATH  Google Scholar 

  • Matsuda, H., N. Ogita, A. Sasaki and K. Sato (1992). Statistical mechanics of population— the lattice Lotka-Volterra model. Prog. Theor. Phys. 88, 1035–1049.

    Article  Google Scholar 

  • Mollison, D. (1977). Spatial contact models for ecological and epidemic spread. J. R. Stat. Soc. B 39, 283–326.

    MATH  MathSciNet  Google Scholar 

  • Mollison, D. (Ed.), (1995). Epidemic Models and their Relation to Data, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Neubert, M. G. and H. Caswell (2000). Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81, 1613–1628.

    Article  Google Scholar 

  • Otten, W., J. A. N. Filipe, D. J. Bailey and C. A. Gilligan (2003). Quantification and analysis of transmission rates for soil-borne epidemics. Ecology (in press).

  • Sakai, A. K. (2001). The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332.

    Article  Google Scholar 

  • Sato, K., H. Matsuda and A. Sasaki (1994). Pathogen invasion and host extinction in lattice structured populations. J. Math. Biol. 32, 251–268.

    Article  MATH  Google Scholar 

  • Swinton, J. and C. A. Gilligan (1999). Selecting hyperparasites for biocontrol of Dutch elm disease. Philos. R. Soc. Lond. B Biol. 266, 437–445.

    Article  Google Scholar 

  • Zadoks, J. and F. van den Bosch (1994). On the spread of plant-disease—a theory on foci. Ann. Rev. Phytopathology 32, 503–521.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. N. Filipe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipe, J.A.N., Otten, W., Gibson, G.J. et al. Inferring the dynamics of a spatial epidemic from time-series data. Bull. Math. Biol. 66, 373–391 (2004). https://doi.org/10.1016/j.bulm.2003.09.002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.09.002

Keywords

Navigation