Skip to main content
Log in

Impact of early-life stress on the medial prefrontal cortex functions — a search for the pathomechanisms of anxiety and mood disorders

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Although anxiety and mood disorders (MDs) are the most common mental diseases, the etiologies and mechanisms of these psychopathologies are still a matter of debate. The medial prefrontal cortex (mPFC) is a brain structure that is strongly implicated in the pathophysiology of these disorders. Agrowing number of epidemiological and clinical studies show that early-life stress (ELS) during the critical period of brain development may increase the risk for anxiety and MDs. Neuroimaging analyses in humans and numerous reports from animal models clearly demonstrate that ELS affects behaviors that are dependent on the mPFC, as well as neuronal activity and synaptic plasticity within the mPFC. The mechanisms engaged in ELS-induced changes in mPFC function involve alterations in the developmental trajectory of the mPFC and may be responsible for the emergence of both early-onset (during childhood and adolescence) and adulthood-onset anxiety and MDs. ELS-evoked changes in mPFC synaptic plasticity may constitute an example of metaplasticity. ELS may program brain functions by affecting glucocorticoid levels. On the molecular level, ELS-induced programming is registered by epigenetic mechanisms, such as changes in DNAmethylation pattern, histone acetylation and microRNA expression. Vulnerability and resilience to ELS-related anxiety and MDs depend on the interaction between individual genetic predispositions, early-life experiences and later-life environment. In conclusion, ELS may constitute a significant etiological factor for anxiety and MDs, whereas animal models of ELS are helpful tools for understanding the pathomechanisms of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

11B-HSD2:

11β-hydroxysteroid dehydrogenase type 2

BDNF:

brain-derived neurotrophic factor

ELS:

early-life stress

GDNF:

glial cell-derived neurotrophic factor

GFAP:

glial fibrillary acidic protein

GR:

glucocorticoid receptor

ILC:

infralimbic cortex

LTD:

long-term depression

LTP:

long-term potentiation

MDs:

mood disorders

miRNA:

microRNA

mPFC:

medial prefrontal cortex

MS:

maternal separation

NCAM:

neural cell adhesion molecules

PLC:

prelimbic cortex

PTSD:

post-traumatic stress disorder

SHRP:

stress hyporesponsive period

vmPFC:

ventromedial prefrontal cortex

References

  1. Abraham WC, Bear MF: Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci, 1996, 19, 126–130.

    Article  CAS  PubMed  Google Scholar 

  2. Banasr M, Duman RS: Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry, 2008, 64, 863–870.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baudin A, Blot K, Verney C, Estevez L, Santa-Maria J, Gressens P, Giros B et al.: Maternal deprivation induces deficits in temporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiol Learn Mem, 2012, 98, 207–214.

    Article  CAS  PubMed  Google Scholar 

  4. Bock J, Braun K: The impact of perinatal stress on the functional maturation of prefronto-cortical synaptic circuits: implications for the pathophysiology of ADHD? Prog Brain Res, 2011, 189, 155–169.

    Article  CAS  PubMed  Google Scholar 

  5. Bock J, Gruss M, Becker S, Braun K: Experience-induced changes of dendritic spine densities in the pre-frontal and sensory cortex: correlation with developmental time windows. Cereb Cortex, 2005, 15, 802–808.

    Article  PubMed  Google Scholar 

  6. Bock J, Riedel A, Braun K: Differential changes of metabolic brain activity and interregional functional coupling in prefronto-limbic pathways during different stress conditions: functional imaging in freely behaving rodent pups. Front Cell Neurosci, 2012, 6, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bordner KA, George ED, Carlyle BC, Duque A, Kitchen RR, Lam TT, Colangelo CM et al.: Functional genomic and proteomic analysis reveals disruption of myelin-related genes and translation in a mouse model of early life neglect. Front Psychiatry, 2011, 2, 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Braun K, Antemano R, Helmeke C, Buchner M, Poeggel G: Juvenile separation stress induces rapid region- and layer-specific changes in S100ss- and glial fibrillary acidic protein-immunoreactivity in astrocytes of the rodent medial prefrontal cortex. Neuroscience, 2009, 160, 629–638.

    Article  CAS  PubMed  Google Scholar 

  9. Brenhouse HC: Early life adversity alters the developmental profiles of addiction-related prefrontal cortex circuitry. Brain Sci, 2013, 3, 143–158.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brenhouse HC, Andersen SL: Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci Biobehav Rev, 2011, 35, 1687–1703.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Callaghan BL, Richardson R: Early-life stress affects extinction during critical periods of development: an analysis of the effects of maternal separation on extinction in adolescent rats. Stress, 2012, 15, 671–679.

    Article  PubMed  Google Scholar 

  12. Castaneda AE, Tuulio-Henriksson A, Marttunen M, Suvisaari J, Lonnqvist J: A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J Affect Disord, 2008, 106, 1–27.

    Article  PubMed  Google Scholar 

  13. Chan T, Kyere K, Davis BR, Shemyakin A, Kabitzke PA, Shair HN, Barr GA, Wiedenmayer CP: The role of the medial prefrontal cortex in innate fear regulation in infants, juveniles, and adolescents. JNeurosci, 2011, 31, 4991–4999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chatterjee D, Chatterjee-Chakraborty M, Rees S, Cauchi J, de Medeiros CB, Fleming AS: Maternal isolation alters the expression of neural proteins during development: ‘Stroking’ stimulation reverses these effects. Brain Res, 2007, 1158, 11–27.

    Article  CAS  PubMed  Google Scholar 

  15. Chocyk A, Bobula B, Dudys D, Przyborowska A, Majcher-Maslanka I, Hess G, Wedzony K: Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur JNeurosci, 2013, 38, 2089–2107.

    Article  PubMed  Google Scholar 

  16. Chocyk A, Dudys D, Przyborowska A, Maćkowiak M, Wędzony K: Impact of maternal separation on neural cell adhesion molecules expression in dopaminergic brain regions of juvenile, adolescent and adult rats. Pharmacol Rep, 2010, 62, 1218–1224.

    Article  CAS  PubMed  Google Scholar 

  17. Chuang JC, Jones PA: Epigenetics and microRNAs. Pediatr Res, 2007, 61, 24R–29R.

    Article  CAS  PubMed  Google Scholar 

  18. Daskalakis NP, Bagot RC, Parker KJ, Vinkers CH, de Kloet ER: The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 2013, 38, 1858–1873.

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Kloet ER, Sibug RM, Helmerhorst FM, Schmidt MV: Stress, genes and the mechanism of programming the brain for later life. Neurosci Biobehav Rev, 2005, 29, 271–281.

    Article  PubMed  CAS  Google Scholar 

  20. Drevets WC, Price JL, Furey ML: Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct, 2008, 213, 93–118.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gould E, Woolley CS, McEwen BS: Adrenal steroids regulate postnatal development of the rat dentate gyrus: I. Effects of glucocorticoids on cell death. J Comp Neurol, 1991, 313, 479–485.

    Article  CAS  PubMed  Google Scholar 

  22. Gunnar MR: Integrating neuroscience and psychological approaches in the study of early experiences. Ann NY Acad Sci, 2003, 1008, 238–247.

    Article  PubMed  Google Scholar 

  23. Hanson JL, Chung MK, Avants BB, Rudolph KD, Shirt-cliff EA, Gee JC, Davidson RJ, Pollak SD: Structural variations in prefrontal cortex mediate the relationship between early childhood stress and spatial working memory. J Neurosci, 2012, 32, 7917–7925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hayes JP, Hayes SM, Mikedis AM: Quantitative metaanalysis of neural activity in posttraumatic stress disorder. Biol Mood Anxiety Disord, 2012, 2, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heidbreder CA, Groenewegen HJ: The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev, 2003, 27, 555–579.

    Article  PubMed  Google Scholar 

  26. Jensen PC, Monk C, Champagne FA: Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS One, 2012, 7, e39791.

    Article  CAS  Google Scholar 

  27. Jones PB: Adult mental health disorders and their age at onset. Br J Psychiatry Suppl, 2013, 54, s5–10.

    Article  CAS  PubMed  Google Scholar 

  28. Kanagawa T, Tomimatsu T, Hayashi S, Shioji M, Fukuda H, Shimoya K, Murata Y: The effects of repeated corticosteroid administration on the neurogenesis in the neonatal rat. Am J Obstet Gynecol, 2006, 194, 231–238.

    Article  CAS  PubMed  Google Scholar 

  29. Kao GS, Cheng LY, Chen LH, Tzeng WY, Cherng CG, Su CC, Wang CY, Yu L: Neonatal isolation decreases cued fear conditioning and frontal cortical histone 3 lysine 9 methylation in adult female rats. Eur J Pharmacol, 2012, 697, 65–72.

    Article  CAS  PubMed  Google Scholar 

  30. Kessler RC, McLaughlin KA, Green JG, Gruber MJ, Sampson NA, Zaslavsky AM, Aguilar-Gaxiola S et al.: Childhood adversities and adult psychopathology in the WHO World Mental Health Surveys. Br J Psychiatry, 2010, 197, 378–385.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kolb B, Mychasiuk R, Muhammad A, Li Y, Frost DO, Gibb R: Experience and the developing prefrontal cortex. Proc Natl Acad Sci USA, 2012, 109, Suppl 2, 17186–17193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leussis MP, Freund N, Brenhouse HC, Thompson BS, Andersen SL: Depressive-like behavior in adolescents after maternal separation: sex differences, controllability, and GABA. Dev Neurosci, 2012, 34, 210–217.

    Article  CAS  PubMed  Google Scholar 

  33. Leventopoulos M, Ruedi-Bettschen D, Knuesel I, Feldon J, Pryce CR, Opacka-Juffry J: Long-term effects of early life deprivation on brain glia in Fischer rats. Brain Res, 2007, 1142, 119–126.

    Article  CAS  PubMed  Google Scholar 

  34. Levine A, Worrell TR, Zimnisky R, Schmauss C: Early life stress triggers sustained changes in histone deacetylase expression and histone H4 modifications that alter responsiveness to adolescent antidepressant treatment. Neurobiol Dis, 2012, 45, 488–498.

    Article  CAS  PubMed  Google Scholar 

  35. Lisboa SF, Stecchini MF, Correa FM, Guimaraes FS, Resstel LB: Different role of the ventral medial prefrontal cortex on modulation of innate and associative learned fear. Neuroscience, 2010, 171, 760–768.

    Article  CAS  PubMed  Google Scholar 

  36. Lisman J, Schulman H, Cline H: The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci, 2002, 3, 175–190.

    Article  CAS  PubMed  Google Scholar 

  37. Marek R, Strobel C, Bredy TW, Sah P: The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol, 2013, 591, 2381–2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Markham JA, Koenig JI: Prenatal stress: role in psychotic and depressive diseases. Psychopharmacology (Berl), 2011, 214, 89–106.

    Article  CAS  Google Scholar 

  39. Monroy E, Hernandez-Torres E, Flores G: Maternal separation disrupts dendritic morphology of neurons in prefrontal cortex, hippocampus, and nucleus accumbens in male rat offspring. J Chem Neuroanat, 2010, 40, 93–101.

    Article  PubMed  Google Scholar 

  40. Muhammad A, Kolb B: Maternal separation altered behavior and neuronal spine density without influencing amphetamine sensitization. Behav Brain Res, 2011, 223, 7–16.

    Article  CAS  PubMed  Google Scholar 

  41. Musholt K, Cirillo G, Cavaliere C, Rosaria BM, Bock J, Helmeke C, Braun K, Papa M: Neonatal separation stress reduces glial fibrillary acidic protein- and S100β-immunoreactive astrocytes in the rat medial precentral cortex. Dev Neurobiol, 2009, 69, 203–211.

    Article  CAS  PubMed  Google Scholar 

  42. Mychasiuk R, Gibb R, Kolb B: Prenatal stress produces sexually dimorphic and regionally specific changes in gene expression in hippocampus and frontal cortex of developing rat offspring. Dev Neurosci, 2011, 33, 531–538.

    Article  CAS  PubMed  Google Scholar 

  43. Mychasiuk R, Ilnytskyy S, Kovalchuk O, Kolb B, Gibb R: Intensity matters: brain, behaviour and the epigenome of prenatally stressed rats. Neuroscience, 2011, 180, 105–110.

    Article  CAS  PubMed  Google Scholar 

  44. Myers-Schulz B, Koenigs M: Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol Psychiatry, 2012, 17, 132–141.

    Article  CAS  PubMed  Google Scholar 

  45. Nederhof E, Schmidt MV: Mismatch or cumulative stress: toward an integrated hypothesis of programming effects. Physiol Behav, 2012, 106, 691–700.

    Article  CAS  PubMed  Google Scholar 

  46. O’Donnell KJ, Bugge JA, Freeman L, Khalife N, O’Connor TG, Glover V: Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroen-docrinology, 2012, 37, 818–826.

    Article  PubMed  CAS  Google Scholar 

  47. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF, Jr. et al.: Glial cells in (patho)-physiology. J Neurochem, 2012, 121, 4–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pascual R, Zamora-Leon SP: Effects of neonatal maternal deprivation and postweaning environmental complexity on dendritic morphology of prefrontal pyramidal neurons in the rat. Acta Neurobiol Exp (Wars), 2007, 67, 471–479.

    Google Scholar 

  49. Pattwell SS, Duhoux S, Hartley CA, Johnson DC, Jing D, Elliott MD, Ruberry EJ et al.: Altered fear learning across development in both mouse and human. Proc Natl Acad Sci USA, 2012, 109, 16318–16323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Provencal N, Suderman MJ, Guillemin C, Massart R, Rug-giero A, Wang D, Bennett AJ et al.: The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J Neurosci, 2012, 32, 15626–15642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pryce CR, Ruedi-Bettschen D, Dettling AC, Feldon J: Early life stress: long-term physiological impact in rodents and primates. News Physiol Sci, 2002, 17, 150–155.

    CAS  PubMed  Google Scholar 

  52. Reynolds RM: Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis—2012 Curt Richter Award Winner. Psychoneu-roendocrinology, 2013, 38, 1–11.

    Article  CAS  PubMed  Google Scholar 

  53. Rinne-Albers MA, van der Wee NJ, Lamers-Winkelman F, Vermeiren RR: Neuroimaging in children, adolescents and young adults with psychological trauma. Eur Child Adolesc Psychiatry, 2013, [Epub ahead of print].

  54. Schmidt MV: Animal models for depression and the mismatch hypothesis of disease. Psychoneuroendocrinology, 2011, 36, 330–338.

    Article  PubMed  Google Scholar 

  55. Schmidt MV, Abraham WC, Maroun M, Stork O, Richter-Levin G: Stress-induced metaplasticity: from synapses to behavior. Neuroscience, 2013, 250, 112–120.

    Article  CAS  PubMed  Google Scholar 

  56. Schmidt MV, Wang XD, Meijer OC: Early life stress paradigms in rodents: potential animal models of depression? Psychopharmacology (Berl), 2011, 214, 131–140.

    Article  CAS  Google Scholar 

  57. Schouten M, Aschrafi A, Bielefeld P, Doxakis E, Fitzsimons CP: MicroRNAs and the regulation of neuronal plasticity under stress conditions. Neuroscience, 2013, 241, 188–205.

    Article  CAS  PubMed  Google Scholar 

  58. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ: Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsycho-pharmacology, 2011, 36, 529–538.

    Article  PubMed  Google Scholar 

  59. Stanton ME, Gutierrez YR, Levine S: Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats. Behav Neurosci, 1988, 102, 692–700.

    Article  CAS  PubMed  Google Scholar 

  60. Stevenson CW, Halliday DM, Marsden CA, Mason R: Early life programming of hemispheric lateralization and synchronization in the adult medial prefrontal cortex. Neuroscience, 2008, 155, 852–863.

    Article  CAS  PubMed  Google Scholar 

  61. Stevenson CW, Spicer CH, Mason R, Marsden CA: Early life programming of fear conditioning and extinction in adult male rats. Behav Brain Res, 2009, 205, 505–510.

    Article  PubMed  Google Scholar 

  62. Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, Yamagata H et al.: Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci, 2010, 30, 15007–15018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Harmelen AL, van Tol MJ, van der Wee NJ, Veltman DJ, Aleman A, Spinhoven P, van Buchem MA et al.: Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biol Psychiatry, 2010, 68, 832–838.

    Article  PubMed  Google Scholar 

  64. Wang L, Jiao J, Dulawa SC: Infant maternal separation impairs adult cognitive performance in BALB/cJ mice. Psychopharmacology (Berl), 2011, 216, 207–218.

    Article  CAS  Google Scholar 

  65. Wang L, Paul N, Stanton SJ, Greeson JM, Smoski MJ: Loss of sustained activity in the ventromedial prefrontal cortex in response to repeated stress in individuals with early-life emotional abuse: implications for depression vulnerability. Front Psychol, 2013, 4, 320.

    PubMed  PubMed Central  Google Scholar 

  66. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S et al.: Epigenetic programming by maternal behavior. Nat Neurosci, 2004, 7, 847–854.

    Article  CAS  PubMed  Google Scholar 

  67. Weber M, Killgore WD, Rosso IM, Britton JC, Schwab ZJ, Weiner MR, Simon NM et al.: Voxel-based morphometric gray matter correlates of posttraumatic stress disorder. J Anxiety Disord, 2013, 27, 413–419.

    Article  PubMed  PubMed Central  Google Scholar 

  68. WHO report: Cross-national comparisons of the prevalences and correlates of mental disorders. Bulletin of the World Health Organization, 2000, 78, 413–426.

  69. Xie L, Korkmaz KS, Braun K, Bock J: Early life stress-induced histone acetylations correlate with activation of the synaptic plasticity genes Arc and Egr1 in the mouse hippocampus. J Neurochem, 2013, 125, 457–464.

    Article  CAS  PubMed  Google Scholar 

  70. Yu IT, Lee SH, Lee YS, Son H: Differential effects of corticosterone and dexamethasone on hippocampal neu-rogenesis in vitro. Biochem Biophys Res Commun, 2004, 317, 484–490.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang J, Abdallah CG, Chen Y, Huang T, Huang Q, Xu C, Xiao Y et al.: Behavioral deficits, abnormal corti-costerone, and reduced prefrontal metabolites of adolescent rats subject to early life stress. Neurosci Lett, 2013, 545, 132–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zucchi FC, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, Kovalchuk I et al.: Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS One, 2013, 8, e56967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Chocyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chocyk, A., Majcher-Maślanka, I., Dudys, D. et al. Impact of early-life stress on the medial prefrontal cortex functions — a search for the pathomechanisms of anxiety and mood disorders. Pharmacol. Rep 65, 1462–1470 (2013). https://doi.org/10.1016/S1734-1140(13)71506-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(13)71506-8

Key words

Navigation