Skip to main content
Log in

Early life stress paradigms in rodents: potential animal models of depression?

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

While human depressive illness is indeed uniquely human, many of its symptoms may be modeled in rodents. Based on human etiology, the assumption has been made that depression-like behavior in rats and mice can be modulated by some of the powerful early life programming effects that are known to occur after manipulations in the first weeks of life.

Objective

Here we review the evidence that is available in literature for early life manipulation as risk factors for the development of depression-like symptoms such as anhedonia, passive coping strategies, and neuroendocrine changes. Early life paradigms that were evaluated include early handling, separation, and deprivation protocols, as well as enriched and impoverished environments. We have also included a small number of stress-related pharmacological models.

Results

We find that for most early life paradigms per se, the actual validity for depression is limited. A number of models have not been tested with respect to classical depression-like behaviors, while in many cases, the outcome of such experiments is variable and depends on strain and additional factors.

Conclusion

Because programming effects confer vulnerability rather than disease, a number of paradigms hold promise for usefulness in depression research, in combination with the proper genetic background and adult life challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barr CS, Newman TK, Becker ML, Parker CC, Champoux M, Lesch KP, Goldman D, Suomi SJ, Higley JD (2003) The utility of the non-human primate; model for studying gene by environment interactions in behavioral research. Genes Brain Behav 2:336–340

    Article  PubMed  CAS  Google Scholar 

  • Bhansali P, Dunning J, Singer SE, David L, Schmauss C (2007) Early life stress alters adult serotonin 2C receptor pre-mRNA editing and expression of the alpha subunit of the heterotrimeric G-protein G q. J Neurosci Off J Soc Neurosci 27:1467–1473

    CAS  Google Scholar 

  • Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, Papiol S, Seaman S, Lucae S, Kohli MA, Nickel T, Kunzel HE, Fuchs B, Majer M, Pfennig A, Kern N, Brunner J, Modell S, Baghai T, Deiml T, Zill P, Bondy B, Rupprecht R, Messer T, Kohnlein O, Dabitz H, Bruckl T, Muller N, Pfister H, Lieb R, Mueller JC, Lohmussaar E, Strom TM, Bettecken T, Meitinger T, Uhr M, Rein T, Holsboer F, Muller-Myhsok B (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36:1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, Tang Y, Gillespie CF, Heim CM, Nemeroff CB, Schwartz AC, Cubells JF, Ressler KJ (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA, J Am Med Assoc 299:1291–1305

    Article  CAS  Google Scholar 

  • Bradley RG, Binder EB, Epstein MP, Tang Y, Nair HP, Liu W, Gillespie CF, Berg T, Evces M, Newport DJ, Stowe ZN, Heim CM, Nemeroff CB, Schwartz A, Cubells JF, Ressler KJ (2008) Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch Gen Psychiatry 65:190–200

    Article  PubMed  CAS  Google Scholar 

  • Branchi I (2009) The mouse communal nest: investigating the epigenetic influences of the early social environment on brain and behavior development. Neurosci Biobehav Rev 33:551–559

    Article  PubMed  Google Scholar 

  • Branchi I, D’Andrea I, Fiore M, Di Fausto V, Aloe L, Alleva E (2006) Early social enrichment shapes social behavior and nerve growth factor and brain-derived neurotrophic factor levels in the adult mouse brain. Biol Psychiatry 60:690–696

    Article  PubMed  CAS  Google Scholar 

  • Branchi I, D’Andrea I, Cirulli F, Lipp HP, Alleva E (2010) Shaping brain development: mouse communal nesting blunts adult neuroendocrine and behavioral response to social stress and modifies chronic antidepressant treatment outcome. Psychoneuroendocrinology 35:743–751

    Article  PubMed  CAS  Google Scholar 

  • Brunson KL, Kramar E, Lin B, Chen Y, Colgin LL, Yanagihara TK, Lynch G, Baram TZ (2005) Mechanisms of late-onset cognitive decline after early-life stress. J Neurosci 25:9328–9338

    Article  PubMed  CAS  Google Scholar 

  • Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky PM, Meaney MJ (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci USA 95:5335–5340

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Sci NY N Y 301:386–389

    CAS  Google Scholar 

  • Champagne DL, Bagot RC, van Hasselt F, Ramakers G, Meaney MJ, de Kloet ER, Joels M, Krugers H (2008) Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J Neurosci Off J Soc Neurosci 28:6037–6045

    CAS  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nature reviews. Neuroscience 9:46–56

    PubMed  CAS  Google Scholar 

  • De Kloet ER, Sibug RM, Helmerhorst FM, Schmidt MV (2005) Stress, genes and the mechanism of programming the brain for later life. Neurosci Biobehav Rev 29:271–281

    Article  PubMed  CAS  Google Scholar 

  • De La Garza R (2005) Endotoxin- or pro-inflammatory cytokine-induced sickness behavior as an animal model of depression: focus on anhedonia. Neurosci Biobehav Rev 29:761–770

    Article  CAS  Google Scholar 

  • Dent GW, Okimoto DK, Smith MA, Levine S (2000) Stress-induced alterations in corticotropin-releasing hormone and vasopressin gene expression in the paraventricular nucleus during ontogeny. Neuroendocrinology 71:333–342

    Article  PubMed  CAS  Google Scholar 

  • Dent GW, Smith MA, Levine S (2001) Stress-induced alterations in locus coeruleus gene expression during ontogeny. Brain Res Dev Brain Res 127:23–30

    Article  PubMed  CAS  Google Scholar 

  • Durand M, Sarrieau A, Aguerre S, Mormede P, Chaouloff F (1998) Differential effects of neonatal handling on anxiety, corticosterone response to stress, and hippocampal glucocorticoid and serotonin (5-HT)2A receptors in Lewis rats. Psychoneuroendocrinology 23:323–335

    Article  PubMed  CAS  Google Scholar 

  • El Khoury A, Gruber SHM, Mork A, Mathe AA (2006) Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Progr Neuropsychopharmacol Biol Psychiatry 30:535–540

    Article  CAS  Google Scholar 

  • El Yacoubi M, Vaugeois JM (2007) Genetic rodent models of depression. Curr Opin Pharmacol 7:3–7

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek BA, Cools AR (2000) The long-term effects of maternal deprivation depend on the genetic background. Neuropsychopharmacology 23:99–106

    Article  PubMed  CAS  Google Scholar 

  • Enthoven L, Schmidt MV, Cheung YH, van der Mark MH, De Kloet ER, Oitzl MS (2010) Ontogeny of the HPA axis of the CD1 mouse following 24 h maternal deprivation at pnd 3. Int J Dev Neurosci 28:217–224

    Article  PubMed  CAS  Google Scholar 

  • Felszeghy K, Sasvari M, Nyakas C (1993) Behavioral depression: opposite effects of neonatal dexamethasone and ACTH-(4-9) analogue (ORG 2766) treatments in the rat. Horm Behav 27:380–396

    Article  PubMed  CAS  Google Scholar 

  • Flagel SB, Vazquez DM, Watson SJ, Neal CR (2002) Effects of tapering neonatal dexamethasone on rat growth, neurodevelopment, and stress response. AJP Regul Integr Comp Physiol 282:R55–R63

    CAS  Google Scholar 

  • Frazer A, Morilak DA (2005) What should animal models of depression model? Neurosci Biobehav Rev 29:515–523

    Article  PubMed  Google Scholar 

  • Fuchs E (2005) Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr 10:182–190

    PubMed  Google Scholar 

  • Fuchs E, Flügge G (2006) Experimental animal models for the simulation of depression and anxiety. Dialogues Clin Neurosci 8:323–333

    PubMed  Google Scholar 

  • Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 787–798

    Google Scholar 

  • Granger DA, Hood KE, Dreschel NA, Sergeant E, Likos A (2001) Developmental effects of early immune stress on aggressive, socially reactive, and inhibited behaviors. Dev Psychopathol 13:599–610

    Article  PubMed  CAS  Google Scholar 

  • Harre EM, Galic MA, Mouihate A, Noorbakhsh F, Pittman QJ (2008) Neonatal inflammation produces selective behavioural deficits and alters N-methyl-D-aspartate receptor subunit mRNA in the adult rat brain. Eur J Neurosci 27:644–653

    Article  PubMed  Google Scholar 

  • Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB (2008) The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33:693–710

    Article  PubMed  CAS  Google Scholar 

  • Hilakivi-Clarke LA, Turkka J, Lister RG, Linnoila M (1991) Effects of early postnatal handling on brain [beta]-adrenoceptors and behavior in tests related to stress. Brain Res 542:286–292

    Article  PubMed  CAS  Google Scholar 

  • Hood KE, Dreschel NA, Granger DA (2003) Maternal behavior changes after immune challenge of neonates with developmental effects on adult social behavior. Dev Psychobiol 42:17–34

    Article  PubMed  Google Scholar 

  • Huynh NN, McIntyre RS (2008) What are the implications of the STAR*D trial for primary care? A review and synthesis. Prim Care Companion J Clin Psychiatry 10:91–96

    Article  PubMed  Google Scholar 

  • Ivy AS, Brunson KL, Sandman C, Baram TZ (2008) Dysfunctional nurturing behavior in rat dams with limited access to nesting material: a clinically relevant model for early-life stress. Neuroscience 154:1132–1142

    Article  PubMed  CAS  Google Scholar 

  • Ivy AS, Rex CS, Chen Y, Dube C, Maras PM, Grigoriadis DE, Gall CM, Lynch G, Baram TZ (2010) Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. J Neurosci Off J Soc Neurosci 30:13005–13015

    CAS  Google Scholar 

  • Jumper SA (1995) A meta-analysis of the relationship of child sexual abuse to adult psychological adjustment. Child Abuse Negl 19:715–728

    Article  PubMed  CAS  Google Scholar 

  • Kalueff AV, Wheaton M, Murphy DL (2007) What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res 179:1–18

    Article  PubMed  CAS  Google Scholar 

  • Karemaker R, Kavelaars A, ter Wolbeek M, Tersteeg-Kamperman M, Baerts W, Veen S, Samsom JF, Visser GH, van Bel F, Heijnen CJ (2008) Neonatal dexamethasone treatment for chronic lung disease of prematurity alters the hypothalamus–pituitary–adrenal axis and immune system activity at school age. Pediatrics 121:e870–e878

    Article  PubMed  Google Scholar 

  • Kaufman J, Plotsky PM, Nemeroff CB, Charney DS (2000) Effects of early adverse experiences on brain structure and function: clinical implications. Biol Psychiatry 48:778–790

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, Gardner CO, Prescott CA (2002) Toward a comprehensive developmental model for major depression in women. Am J Psychiatry 159:1133–1145

    Article  PubMed  Google Scholar 

  • Kentner AC, McLeod SA, Field EF, Pittman QJ (2010) Sex-dependent effects of neonatal inflammation on adult inflammatory markers and behavior. Endocrinology 151:2689–2699

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Cicchetti D (2006) Longitudinal trajectories of self-system processes and depressive symptoms among maltreated and nonmaltreated children. Child Dev 77:624–639

    Article  PubMed  Google Scholar 

  • Kim JM, Stewart R, Kim SW, Yang SJ, Shin IS, Kim YH, Yoon JS (2007) Interactions between life stressors and susceptibility genes (5-HTTLPR and BDNF) on depression in Korean elders. Biol Psychiatry 62:423–428

    Article  PubMed  CAS  Google Scholar 

  • Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT (2008) Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med 5:e45

    Article  PubMed  Google Scholar 

  • Knight HM, Pickard BS, Maclean A, Malloy MP, Soares DC, McRae AF, Condie A, White A, Hawkins W, McGhee K, van Beck M, MacIntyre DJ, Starr JM, Deary IJ, Visscher PM, Porteous DJ, Cannon RE, St Clair D, Muir WJ, Blackwood DHR (2009) A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. Am J Hum Genet 85:833–846

    Article  PubMed  CAS  Google Scholar 

  • Kohman RA, Tarr AJ, Sparkman NL, Bogale TMH, Boehm GW (2008) Neonatal endotoxin exposure impairs avoidance learning and attenuates endotoxin-induced sickness behavior and central IL-1 beta gene transcription in adulthood. Behav Brain Res 194:25–31

    Article  PubMed  CAS  Google Scholar 

  • Ladd CO, Owens MJ, Nemeroff CB (1996) Persistent changes in corticotropin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology 137:1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, Plotsky PM (2000) Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res 122:81–103

    Article  PubMed  CAS  Google Scholar 

  • Lambas-Senas L, Mnie-Filali O, Certin V, Faure C, Lemoine L, Zimmer L, Haddjeri N (2009) Functional correlates for 5-HT(1A) receptors in maternally deprived rats displaying anxiety and depression-like behaviors. Progr Neuropsychopharmacol Biol Psychiatry 33:262–268

    Article  CAS  Google Scholar 

  • Larkin W, Read J (2008) Childhood trauma and psychosis: evidence, pathways, and implications. J Postgrad Med 54:287–293

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Kim HJ, Kim JG, Ryu V, Kim BT, Kang DW, Jahng JW (2007) Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res 58:32–39

    Article  PubMed  CAS  Google Scholar 

  • Leventopoulos M, Russig H, Feldon J, Pryce CR, Opacka-Juffry J (2009) Early deprivation leads to long-term reductions in motivation for reward and 5-HT1A binding and both effects are reversed by fluoxetine. Neuropharmacology 56:692–701

    Article  PubMed  CAS  Google Scholar 

  • Levine S (1957) Infantile experience and resistance to physiological stress. Sci NY N Y 126:405

    CAS  Google Scholar 

  • Levine S (1970) The pituitary–adrenal system and the developing brain. Prog Brain Res 32:79–85

    Article  PubMed  CAS  Google Scholar 

  • Levine S (2001) Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. Physiol Behav 73:255–260

    Article  PubMed  CAS  Google Scholar 

  • Levine S, Glick D, Nakane PK (1967) Adrenal and plasma corticosterone and vitamin A in rat adrenal glands during postnatal development. Endocrinology 80:910–914

    Article  PubMed  CAS  Google Scholar 

  • Liebl C, Panhuysen M, Pütz B, Trümbach D, Wurst W, Deussing JM, Müller MB, Schmidt MV (2009) Gene expression profiling following maternal deprivation: involvement of the brain renin–angiotensin system. Front Mol Neurosci 2:1

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Sci NY N Y 277:1659–1662

    CAS  Google Scholar 

  • Liu D, Caldji C, Sharma S, Plotsky PM, Meaney MJ (2000) Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinephrine release in the hypothalamic paraventricular nucleus. J Neuroendocrinol 12:5–12

    Article  PubMed  Google Scholar 

  • Lucchina L, Carola V, Pitossi F, Depino AM (2010) Evaluating the interaction between early postnatal inflammation and maternal care in the programming of adult anxiety and depression-related behaviors. Behav Brain Res 213:56–65

    Article  PubMed  Google Scholar 

  • MacMillan HL, Fleming JE, Streiner DL, Lin E, Boyle MH, Jamieson E, Duku EK, Walsh CA, Wong MY, Beardslee WR (2001) Childhood abuse and lifetime psychopathology in a community sample. Am J Psychiatry 158:1878–1883

    Article  PubMed  CAS  Google Scholar 

  • MacQueen GM, Ramakrishnan K, Ratnasingan R, Chen B, Young LT (2003) Desipramine treatment reduces the long-term behavioural and neurochemical sequelae of early-life maternal separation. Int J Neuropsychopharmacol 6:391–396

    Article  PubMed  CAS  Google Scholar 

  • Macri S, Laviola G (2004) Single episode of maternal deprivation and adult depressive profile in mice: interaction with cannabinoid exposure during adolescence. Behav Brain Res 154:231–238

    Article  PubMed  Google Scholar 

  • Maniam J, Morris MJ (2010) Palatable cafeteria diet ameliorates anxiety and depression-like symptoms following an adverse early environment. Psychoneuroendocrinology 35:717–728

    Article  PubMed  CAS  Google Scholar 

  • Marais L, van Rensburg SJ, van Zyl JM, Stein DJ, Daniels WMU (2008) Maternal separation of rat pups increases the risk of developing depressive-like behavior after subsequent chronic stress by altering corticosterone and neurotrophin levels in the hippocampus. Neurosci Res 61:106–112

    Article  PubMed  CAS  Google Scholar 

  • Marco EM, Adriani W, Llorente R, Laviola G, Viveros MP (2009) Detrimental psychophysiological effects of early maternal deprivation in adolescent and adult rodents: altered responses to cannabinoid exposure. Neurosci Biobehav Rev 33:498–507

    Article  PubMed  CAS  Google Scholar 

  • Matthews K, Robbins TW (2003) Early experience as a determinant of adult behavioural responses to reward: the effects of repeated maternal separation in the rat. Neurosci Biobehav Rev 27:45–55

    Article  PubMed  Google Scholar 

  • McKinney WT, Bunney WE (1969) Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry 21:240–248

    PubMed  Google Scholar 

  • Meaney MJ, Viau V, Bhatnagar S, Betito K, Iny LJ, O'Donnell D, Mitchell JB (1991) Cellular mechanisms underlying the development and expression of individual differences in the hypothalamic–pituitary–adrenal stress response. J Steroid Biochem Mol Biol 39:265–274

    Article  PubMed  CAS  Google Scholar 

  • Michaels CC, Holtzman SG (2007) Enhanced sensitivity to naltrexone-induced drinking suppression of fluid intake and sucrose consumption in maternally separated rats. Pharmacol Biochem Behav 86:784–796

    Article  PubMed  CAS  Google Scholar 

  • Millstein RA, Holmes A (2007) Effects of repeated maternal separation on anxiety- and depression-related phenotypes in different mouse strains. Neurosci Biobehav Rev 31:3–17

    Article  PubMed  Google Scholar 

  • Molnar BE, Buka SL, Kessler RC (2001) Child sexual abuse and subsequent psychopathology: results from the National Comorbidity Survey. Am J Public Health 91:753–760

    Article  PubMed  CAS  Google Scholar 

  • Müller MB, Holsboer F (2006) Mice with mutations in the HPA-system as models for symptoms of depression. Biol Psychiatry 59:1104–1115

    Article  PubMed  CAS  Google Scholar 

  • Neal CR, Weidemann G, Kabbaj M, Vazquez DM (2004) Effect of neonatal dexamethasone exposure on growth and neurological development in the adult rat. AJP Regul Integr Comp Physiol 287:R375–R385

    Article  CAS  Google Scholar 

  • Paile-Hyvärinen M, Räikkönen K, Forsen T, Kajantie E, Ylihärsilä H, Salonen MK, Osmond C, Eriksson JG (2007) Depression and its association with diabetes, cardiovascular disease, and birth weight. Ann Med 39:634–640

    Article  PubMed  Google Scholar 

  • Paolucci EO, Genuis ML, Violato C (2001) A meta-analysis of the published research on the effects of child sexual abuse. J Psychol 135:17–36

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou A, Gerozissis K, Prokopiou A, Bolaris S, Stylianopoulou F (2002) Sex differences in the effects of neonatal handling on the animal's response to stress and the vulnerability for depressive behaviour. Behav Brain Res 129:131–139

    Article  PubMed  CAS  Google Scholar 

  • Pryce CR, Feldon J (2003) Long-term neurobehavioural impact of the postnatal environment in rats: manipulations, effects and mediating mechanisms. Neurosci Biobehav Rev 27:57–71

    Article  PubMed  Google Scholar 

  • Pryce CR, Seifritz E (2010) A translational research framework for enhanced validity of mouse models of psychopathological states in depression. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2010.05.003:

    PubMed  Google Scholar 

  • Pryce CR, Rüedi-Bettschen D, Dettling AC, Weston A, Russig H, Ferger B, Feldon J (2005) Long-term effects of early-life environmental manipulations in rodents and primates: potential animal models in depression research. Neurosci Biobehav Rev 29:649–674

    Article  PubMed  Google Scholar 

  • Rice C, Sandman CA, Lenjavi MR, Baram TZ (2008) A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology 149:4892–4900

    Article  PubMed  CAS  Google Scholar 

  • Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, Griem A, Kovacs M, Ott J, Merikangas KR (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA, J Am Med Assoc 301:2462–2471

    Article  CAS  Google Scholar 

  • Rots NY, de Jong J, Workel JO, Levine S, Cools AR, De Kloet ER (1996) Neonatal maternally deprived rats have as adults elevated basal pituitary–adrenal activity and enhanced susceptibility to apomorphine. J Neuroendocrinol 8:501–506

    Article  PubMed  CAS  Google Scholar 

  • Rüedi-Bettschen D, Feldon J, Pryce CR (2004) The impaired coping induced by early deprivation is reversed by chronic fluoxetine treatment in adult Fischer rats. Behav Pharmacol 15:413–421

    Article  PubMed  Google Scholar 

  • Rüedi-Bettschen D, Pedersen EM, Feldon J, Pryce CR (2005) Early deprivation under specific conditions leads to reduced interest in reward in adulthood in Wistar rats. Behav Brain Res 156:297–310

    Article  PubMed  Google Scholar 

  • Rüedi-Bettschen D, Zhang W, Russig H, Ferger B, Weston A, Pedersen EM, Feldon J, Pryce CR (2006) Early deprivation leads to altered behavioural, autonomic and endocrine responses to environmental challenge in adult Fischer rats. Eur J Neurosci 24:2879–2893

    Article  PubMed  Google Scholar 

  • Schapiro S, Geller E, Eiduson S (1962) Neonatal adrenal cortical response to stress and vasopressin. Proc Soc Exp Biol Med 109:937–941

    PubMed  CAS  Google Scholar 

  • Schmidt MV (2010) Animal models for depression and the mismatch hypothesis of disease. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2010.07.001:

    Google Scholar 

  • Schmidt MV, Enthoven L, van der Mark M, Levine S, De Kloet ER, Oitzl MS (2003) The postnatal development of the hypothalamic–pituitary–adrenal axis in the mouse. Int J Dev Neurosci 21:125–132

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MV, Sterlemann V, Wagner K, Niederleitner B, Ganea K, Liebl C, Deussing JM, Berger S, Schütz G, Holsboer F, Müller MB (2009) Postnatal glucocorticoid excess due to pituitary glucocorticoid receptor deficiency: differential short- and long-term consequences. Endocrinology. doi:10.1210/en.2008-1211:

    Google Scholar 

  • Sedlack AJ, Mettenburg J, Basena M, Petta I, McPherson K, Greene A, Li S (2010) Fourth national incidence study of child abuse and neglect (NIS-4): report to congress. US Department of Health and Human Services, Administration for Children and Families, Washington (Ref Type: Internet Communication)

  • Shalev U, Kafkafi N (2002) Repeated maternal separation does not alter sucrose-reinforced and open-field behaviors. Pharmacol Biochem Behav 73:115–122

    Article  PubMed  CAS  Google Scholar 

  • Shanks N, Meaney MJ (1994) Hypothalamic–pituitary–adrenal activation following endotoxin administration in the developing rat: a CRH-mediated effect. J Neuroendocrinol 6:375–383

    Article  PubMed  CAS  Google Scholar 

  • Shanks N, Larocque S, Meaney MJ (1995) Neonatal endotoxin exposure alters the development of the hypothalamic–pituitary–adrenal axis: early illness and later responsivity to stress. J Neurosci 15(1 Pt 1):376–384

    PubMed  CAS  Google Scholar 

  • Shanks N, Windle RJ, Perks PA, Harbuz MS, Jessop DS, Ingram CD, Lightman SL (2000) Early-life exposure to endotoxin alters hypothalamic–pituitary–adrenal function and predisposition to inflammation. Proc Natl Acad Sci USA 97(10):5645–5650

    Article  PubMed  CAS  Google Scholar 

  • Stanton ME, Gutierrez YR, Levine S (1988) Maternal deprivation potentiates pituitary–adrenal stress responses in infant rats. Behav Neurosci 102:692–700

    Article  PubMed  CAS  Google Scholar 

  • Suchecki D, Duarte PB, Tufik S (2000) Pituitary–adrenal axis and behavioural responses of maternally deprived juvenile rats to the open field. Behav Brain Res 111:99–106

    Article  PubMed  CAS  Google Scholar 

  • Suomi SJ (2006) Risk, resilience, and gene x environment interactions in rhesus monkeys. Ann NY Acad Sci 1094:52–62

    Article  PubMed  Google Scholar 

  • Sutanto W, Rosenfeld P, De Kloet ER, Levine S (1996) Long-term effects of neonatal maternal deprivation and ACTH on hippocampal mineralocorticoid and glucocorticoid receptors. Brain Res Dev Brain Res 92:156–163

    Article  PubMed  CAS  Google Scholar 

  • Veenema AH (2009) Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol 30:497–518

    Article  PubMed  CAS  Google Scholar 

  • Wagner KV, Wang XD, Liebl C, Scharf SH, Müller MB, Schmidt MV (2010) Pituitary glucocorticoid receptor deletion reduces vulnerability to chronic stress. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2010.09.007:

    PubMed  Google Scholar 

  • Walker FR, Knott B, Hodgson DM (2008) Neonatal endotoxin exposure modifies the acoustic startle response and circulating levels of corticosterone in the adult rat but only following acute stress. J Psychiatr Res 42:1094–1103

    Article  PubMed  Google Scholar 

  • Weber K, Rockstroh B, Borgelt J, Awiszus B, Popov T, Hoffmann K, Schonauer K, Watzl H, Pröpster K (2008) Stress load during childhood affects psychopathology in psychiatric patients. BMC Psychiatry 8:63

    Article  PubMed  Google Scholar 

  • Wilhelm K, Mitchell PB, Niven H, Finch A, Wedgwood L, Scimone A, Blair IP, Parker G, Schofield PR (2006) Life events, first depression onset and the serotonin transporter gene. Br J Psychiatry J Ment Sci 188:210–215

    Article  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83:1–16

    Article  CAS  Google Scholar 

  • Willner P, Mitchell PJ (2002) The validity of animal models of predisposition to depression. Behav Pharmacol 13:169–188

    PubMed  CAS  Google Scholar 

  • Wittchen HU, Jacobi F (2005) Size and burden of mental disorders in Europe—a critical review and appraisal of 27 studies. Eur Neuropsychopharmacol 15:357–376

    Article  PubMed  CAS  Google Scholar 

  • Workel JO, Oitzl MS, Ledeboer A, De Kloet ER (1997) The Brown Norway rat displays enhanced stress-induced ACTH reactivity at day 18 after 24-h maternal deprivation at day 3. Brain Res Dev Brain Res 103:199–203

    Article  PubMed  CAS  Google Scholar 

  • Workel JO, Oitzl MS, Fluttert M, Lesscher H, Karssen A, De Kloet ER (2001) Differential and age-dependent effects of maternal deprivation on the hypothalamic–pituitary–adrenal axis of Brown Norway rats from youth to senescence. J Neuroendocrinol 13:569–580

    Article  PubMed  CAS  Google Scholar 

  • Yeh TF, Lin YJ, Lin HC, Huang CC, Hsieh WS, Lin CH, Tsai CH (2004) Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. N Engl J Med 350:1304–1313

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias V. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M.V., Wang, XD. & Meijer, O.C. Early life stress paradigms in rodents: potential animal models of depression?. Psychopharmacology 214, 131–140 (2011). https://doi.org/10.1007/s00213-010-2096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2096-0

Keywords

Navigation