Skip to main content
Log in

Effects of co-administration of the GABAB receptor agonist baclofen and a positive allosteric modulator of the GABAB receptor, CGP7930, on the development and expression of amphetamine-induced locomotor sensitization in rats

  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Several of the behavioral effects of amphetamine (AMPH) are mediated by an increase in dopamine neurotransmission in the nucleus accumbens. However, evidence shows that γ-aminobutyric acid B (GABAB) receptors are involved in the behavioral effects of psychostimulants, including AMPH. Here, we examined the effects of co-administration of the GABAB receptor agonist baclofen and a positive allosteric modulator of theGABAB receptor, CGP7930, on AMPH-induced locomotor sensitization.

Methods

In a series of experiments, we examined whether baclofen (2.0, 3.0 and 4.0 mg/kg), CGP7930 (5.0, 10.0 and 20.0 mg/kg), or co-administration of CGP7930 (5.0, 10.0 and 20.0 mg/kg) with a lower dose of baclofen (2.0 mg/kg) could prevent the development and expression of locomotor sensitization produced by AMPH (1.0 mg/kg).

Results

The results showed that baclofen treatment prevented both the development and expression of AMPH-induced locomotor sensitization in a dose-dependent manner. Furthermore, the positive allosteric modulator of the GABAB receptor, CGP7930, increased the effects of a lower dose of baclofen on AMPH-induced locomotor sensitization under both conditions.

Conclusion

These data provide further evidence thatGABAB receptor ligands may modulate psychostimulant-induced behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amara SG, Sonders MS: Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend, 1998, 51, 87–96.

    Article  CAS  PubMed  Google Scholar 

  2. Arnold JM, Roberts DCS: A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav, 1997, 57, 441–447.

    Article  CAS  PubMed  Google Scholar 

  3. Bartoletti M, Gubellini C, Ricci F, Gaiardi M: Baclofen blocks the development of sensitization to the locomotor stimulant effect of amphetamine. Behav Pharmacol, 2005, 16, 553–558.

    Article  CAS  PubMed  Google Scholar 

  4. Bartoletti M, Gubellini C, Ricci F, Gaiardi M: The GABAB agonist baclofen blocks the expression of sensitisation to the locomotor stimulant effect of amphetamine. Behav Pharmacol, 2004, 15, 397–401.

    Article  CAS  PubMed  Google Scholar 

  5. Bartoletti M, Ricci F, Gaiardi MA: GABAB agonist reverses the behavioral sensitization to morphine in rats. Psychopharmacology, 2007, 192, 79–85.

    Article  CAS  PubMed  Google Scholar 

  6. Binet V, Brajon C, Le Corre L, Acher F, Pin JP, Prezeau L: The heptahelical domain of GABAB2 is activated directly by CGP7930, a positive allosteric modulator of the GABAB receptor. J Biol Chem, 2004, 279, 29085–29091.

    Article  CAS  PubMed  Google Scholar 

  7. Bowery NG: GABAB receptor: A site of therapeutic benefit. Curr Opin Pharmacol, 2006, 6, 37–43.

    Article  CAS  PubMed  Google Scholar 

  8. Bowery NG, Hudson AL, Price GW: GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience, 1987, 20, 365–383.

    Article  CAS  PubMed  Google Scholar 

  9. Brebner K, Ahn S, Phillips AG: Attenuation of d-amphetamine self-administration by baclofen in the rat: behavioral and neurochemical correlates. Psychopharmacology, 2005, 177, 409–417.

    Article  CAS  PubMed  Google Scholar 

  10. Brebner K, Froestl W, Andrews M, Phelan R, Roberts DCS: The GABAB agonist CGP 44532 decreases cocaine self-administration in rats: demonstration using a progressive ratio and a discrete trials procedure. Neuropharmacology, 1999, 38, 1797–1804.

    Article  CAS  PubMed  Google Scholar 

  11. Brebner K, Phelan R, Roberts DC: Effect of baclofen on cocaine self-administration in rats reinforced under fixed-ratio 1 and progressive-ratio schedules. Psychopharmacology, 2000, 148, 314–321.

    Article  CAS  PubMed  Google Scholar 

  12. Brebner K, Phelan R, Roberts DCS: Intra-VTA baclofen attenuates cocaine-self-administration on a progressive ratio schedule of reinforcement. Pharmacol Biochem Behav, 2000, 66, 857–862.

    Article  CAS  PubMed  Google Scholar 

  13. Broadbent J, Harless WE: Differential effects of GABAA and GABAB agonist on sensitization to the locomotor stimulant effects of ethanol in DBA/2J mice. Psychopharmacology (Berl), 1999, 197–205.

    Google Scholar 

  14. Chen Y, PhillipsK, Minton G, Sher E: GABAB receptor modulators potentiate baclofen-induced depression of dopamine neuron activity in the rat ventral tegmental area. Br J Pharmacol, 2005, 144, 926–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colombo G, Serra S, Brunetti G, Atzori G, Pani M, Vacca G, Addolorato G et al.: The GABAB receptor agonists baclofen and CGP 44532 prevent acquisition of alcohol drinking behaviour in alcohol-preferring rats. Alcohol Alcohol, 2002, 37, 499–503.

    Article  CAS  PubMed  Google Scholar 

  16. Cryan JF, Kelly PH, Chaperon F, Gentsch C, Mombereau C, Lingenhoehl K, Froestl W: Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N,N’-dicyclopentyl-2-methylsulfanyl-5-nitropyrimidine-4,6-diamine): anxiolytic-like activity without side effects associated with baclofen or benzodiazepines. J Pharmacol Exp Ther, 2004, 310, 952–963.

    Article  CAS  PubMed  Google Scholar 

  17. Di Chiara G: The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend, 1995, 38, 95–137.

    Article  PubMed  Google Scholar 

  18. Di Ciano P, Everitt BJ: The GABAB receptor agonist baclofen attenuates cocaine- and heroin-seeking behavior by rats. Neuropsychopharmacology, 2003, 28, 510–518.

    Article  PubMed  CAS  Google Scholar 

  19. Fattore L, Cossu G, Martellotta MC, Fratta W: Baclofen antagonizes intravenous self-administration of nicotine in mice and rats. Alcohol Alcohol, 2002, 37, 495–498.

    Article  CAS  PubMed  Google Scholar 

  20. Filip M, Cunningham KA: Serotonin 5-HT2C receptors in nucleus accumbens regulate expression of the hyperlocomotive and discriminative stimulus effects of cocaine. Pharmacol Biochem Behav, 2002, 71, 745–756.

    Article  CAS  PubMed  Google Scholar 

  21. Filip M, Frankowska M: Effects of GABAB receptor agents on cocaine priming, discrete contextual cue and food induced relapses. Eur J Pharmacol, 2007, 571, 166–173.

    Article  CAS  PubMed  Google Scholar 

  22. Filip M, Frankowska M, Przegalinski E: Effects of GABAB receptor antagonist, agonists and allosteric positive modulator on the cocaine-induced self-administration and drug discrimination. Eur J Pharmacol, 2007, 574, 148–157.

    Article  CAS  PubMed  Google Scholar 

  23. Frankowska M, Nowak E, Filip M: Effects of GABAB receptor agonists on cocaine hyperlocomotor and sensitizing effects in rats. Pharmacol Rep, 2009, 61, 1042–1049.

    Article  CAS  PubMed  Google Scholar 

  24. Fu Z, Yang H, Xiao Y, Zhao G, Huang H: The gammaaminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens Behav Brain Funct, 2012, 8, 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hotsenpiller G, Wolf ME: Baclofen attenuates conditioned locomotion to cues associated with cocaine administration and stabilizes extracellular glutamate levels in the rat nucleus accumbens. Neuroscience, 2003, 118, 123–134.

    Article  CAS  PubMed  Google Scholar 

  26. Jacobson LH, Cryan JF: Differential sensitivity to the motor and hypothermic effects of the GABAB receptor agonist baclofen in various mouse strains. Psychopharmacology (Berl), 2005, 179, 688–699.

    Article  CAS  Google Scholar 

  27. Johnson SW, North RA: Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol (Lond), 1992, 450, 455–468.

    Article  CAS  Google Scholar 

  28. Kahlig KM, Galli A: Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur J Pharmacol, 2003, 479, 153–158.

    Article  CAS  PubMed  Google Scholar 

  29. Kalivas PW: Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Rev, 1993, 18, 75–113.

    Article  CAS  PubMed  Google Scholar 

  30. Kalivas PW, Duffy P, Eberhardt H: Modulation of A10 neurons by gamma-aminobutyric acid agonists. J Pharmacol Exp Ther, 1990, 253, 858–866.

    CAS  PubMed  Google Scholar 

  31. Kalivas PW, Nakamura M: Neural systems for behavioral activation and reward. Curr Opin Neurobiol, 1999, 9, 223–227.

    Article  CAS  PubMed  Google Scholar 

  32. Kalivas PW, Stewart J: Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev, 1991, 223–244.

    Google Scholar 

  33. Kita H, Kitai ST: Glutamate descarboxylase immunoreactive neurons in the rat neostriatum: Their morphological types and population. Brain Res, 1988, 447, 346–352.

    Article  CAS  PubMed  Google Scholar 

  34. Koek W, France CP, Cheng K, Rice KC: Effects of the GABAB receptor-positive modulators CGP7930 and rac-BHFF in baclofen- and γ-hydroxybutyrate—discriminating pigeons. J Pharmacol Exp Ther, 2012, 341, 369–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koob GF: Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci, 1992, 13, 177–184.

    Article  CAS  PubMed  Google Scholar 

  36. Koob GF, Bloom FE: Cellular and molecular mechanisms of drug dependence. Science, 1988, 242, 715–723.

    Article  CAS  PubMed  Google Scholar 

  37. Kruse LC, Linsenbardt DN, Boehm II SL: Positive allosteric modulation of the GABAB receptor by GS39783 attenuates the locomotor stimulant actions of ethanol and potentiates the induction of locomotor sensitization. Alcohol, 2012, 46, 455–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lhuillier L, Mombereau C, Cryan JF, Kaupmann K: GABAB receptor positive modulation decreases selective molecular and behavioral effects of cocaine. Neuropsychopharmacology, 2007, 32, 388–398.

    Article  CAS  PubMed  Google Scholar 

  39. Liang JH, Chen F, Krstew E, Cowen MS, Carroll FY, Crawford D, Beart PM, Lawrence AJ: The GABAB receptor allosteric modulator CGP7930, like baclofen, reduces operant self-administration of ethanol in alcoholpreferring rats. Neuropharmacology, 2006, 50, 632–639.

    Article  CAS  PubMed  Google Scholar 

  40. Lobina C, Carai MA, Froestl W, Mugnaini C, Pasquini S, Corelli F, Gessa GL, Colombo G: Activation of the GABAB receptor prevents nicotine-induced locomotor stimulation in mice. Front Psychiatry, 2011, 2, 1–5.

    Article  CAS  Google Scholar 

  41. Miranda F, Jiménez JC, Cedillo LN, Sandoval-Sánchez A, Millán-Mejía P, Sánchez-Castillo H, Velázquez-Martínez DN: The GABA-B antagonist 2-hydroxysaclofen reverses the effect of baclofen on the discriminative stimulus effects of d-amphetamine in the conditioned taste aversion procedure. Pharmacol Biochem Behav, 2009, 93, 25–30.

    Article  CAS  PubMed  Google Scholar 

  42. Nagai T, McGeer PL, McGeer EG: Distribution of GABA-T-intensive neurons in the rat forebrain and midbrain. J Comp Neurol, 1983, 218, 220–238.

    Article  CAS  PubMed  Google Scholar 

  43. Orrù A, Lai P, Lobina C, Maccioni P, Piras P, Scanu L, Froestl W et al.: Reducing effect of the positive allosteric modulators of the GABAB receptor, CGP7930 and GS39783, on alcohol intake in alcohol-preferring rats. Eur J Pharmacol, 2005, 525, 105–111.

    Article  PubMed  CAS  Google Scholar 

  44. Paterson NE, Froestl W, Markou A: The GABAB receptor agonists baclofen and CGP44532 decreased nicotine self-administration in the rat. Psychopharmacology (Berl), 2004, 172, 179–186.

    Article  CAS  Google Scholar 

  45. Paterson NE, Vlachou S, Guery S, Kaupmann K, Froestl W, Markou A: Positive modulation of GABAB receptors decreased nicotine self-administration and counteracted nicotine-induced enhancement of brain reward function in rats. J Pharmacol Exp Ther, 2008, 326, 306–314.

    Article  CAS  PubMed  Google Scholar 

  46. Pierce RC, Kalivas PW: A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res, 1997, 25, 192–216.

    Article  CAS  Google Scholar 

  47. Pin JP, Kniazeff J, Binet V, Liu J, Maurel D, Galvez T, Duthey B et al.: Activation mechanisms of the heterodimeric GABAB receptor. Biochem Pharmacol, 2004, 68, 1565–1572.

    Article  CAS  PubMed  Google Scholar 

  48. Ranaldi R, Poeggel K: Baclofen decreases methamphetamine self-administration in rats. Neuro Report, 2002, 13, 1107–1110.

    CAS  Google Scholar 

  49. Roberts DCS, Andrews MM: Baclofen suppression of cocaine self-administration: demonstration using a discrete trials procedure. Psychopharmacology, 1997, 131, 271–277.

    Article  CAS  PubMed  Google Scholar 

  50. Roberts DCS, Brebner K: GABA modulation of cocaine self-administration. Ann N Y Acad Sci, 2000, 909, 145–158.

    Article  CAS  PubMed  Google Scholar 

  51. Robinson TE, Berridge KC: The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev, 1993, 18, 247–291.

    Article  CAS  PubMed  Google Scholar 

  52. Rothman RB, Baumann MH: Monoamine transporters and psychostimulant drugs. Eur J Pharmacol, 2003, 479, 23–40.

    Article  CAS  PubMed  Google Scholar 

  53. Shoaib M, Swanner LS, Beyer CE, Golberg SR, Schindler CW: The GABAB agonist baclofen modifies cocaine self-administration in rats. Behav Pharmacol, 1998, 9, 195–206.

    CAS  PubMed  Google Scholar 

  54. Smith MA, Yancey DL, Morgan D, Liu Y, Froestl W, Roberts DC: Effects of positive allosteric modulators of the GABAB receptor on cocaine self-administration in rats. Psychopharmacology (Berl), 2004, 173, 105–111.

    Article  CAS  Google Scholar 

  55. Sugita S, Johnson SW, North RA: Synaptic inputs to GABAA and GABAB receptors originate from discrete afferent neurons. Neurosci Lett, 1992, 134, 207–211.

    Article  CAS  PubMed  Google Scholar 

  56. Urwyler S, Mosbacher J, Lingenhoehl K, Heid J, Hofstetter K, Froestl W, Bettler B, Kaupmann K: Positive allosteric modulation of native and recombinant gamma-aminobutyric acidB receptors by 2,6-di-tertbutyl- 4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol Pharmacol, 2001, 60, 963–971.

    Article  CAS  PubMed  Google Scholar 

  57. Urwyler S, Pozza MF, Lingenhoehl K, Mosbacher J, Lampert C, Froestl W, Koller M, Kaupmann K: N,NDicyclopentyl- 2-methylsulfanyl-5-nitro-pyrimidine-4,6- diamine (GS39783) and structurally related compounds: novel allosteric enhancers of γ-aminobutyric acidB receptor function. J Pharmacol Exp Ther, 2003, 307, 322–330.

    Article  CAS  PubMed  Google Scholar 

  58. Vezina P, Leyton M: Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology, 2009, 56, 160–168.

    Article  CAS  PubMed  Google Scholar 

  59. Westerink B H, Kwint HF, De Vries J B: The pharmacology of mesolimbic dopamine neurons: A dual probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J. Neurosci, 1996, 16, 2605–2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wiley JL, Evans RL, Grainger DB, Nicholson KL: Locomotor activity changes in female adolescent and adult rats during repeated treatment with a cannabinoid or club drug. Pharmacol Rep, 2011, 63, 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  61. Xi ZX, Stein EA: Baclofen inhibits heroin selfadministration behavior and mesolimbic dopamine release. J Pharmacol Exp Ther, 1999, 290, 1369–1374.

    CAS  PubMed  Google Scholar 

  62. Yoshida M, Yokoo H, Tanaka T, Emoto H, Tanaka M: Opposite changes in the mesolimbic dopamine metabolism in the nerve terminal and cell body sites induced by locally infused baclofen in the rat. Brain Res, 1994, 636, 111–114.

    Article  CAS  PubMed  Google Scholar 

  63. Zancheta R, Possi APM, Planeta CS, Marin MT: Repeated administration of caffeine induces either sensitization or tolerance of locomotor stimulation depending on the environmental context. Pharmacol Rep, 2012, 64, 1734–1140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencio Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cedillo, L.N., Miranda, F. Effects of co-administration of the GABAB receptor agonist baclofen and a positive allosteric modulator of the GABAB receptor, CGP7930, on the development and expression of amphetamine-induced locomotor sensitization in rats. Pharmacol. Rep 65, 1132–1143 (2013). https://doi.org/10.1016/S1734-1140(13)71471-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(13)71471-3

Key words

Navigation