Skip to main content
Log in

Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Many pathologies of the central nervous system (CNS) originate from excess of reactive free radicals, notably reactive oxygen species (ROS), and oxidative stress. A phenomenon which usually runs in parallel with oxidative stress is unsaturated lipid peroxidation, which, via a chain reaction, contributes to the progression of disbalanced redox homeostasis. Among long-chain (LC) polyunsaturated fatty acids (PUFAs) abundantly occurring in the CNS, docosahexaenoic acid (DHA), a member of ω-3 LC-PUFAs, deserves special attention, as it is avidly retained and uniquely concentrated in the nervous system, particularly in retinal photoreceptors and synaptic membranes; owing to the presence of the six double bonds between carbon atoms in its polyene chain (C=C), DHA is exquisitely sensitive to oxidative damage. In addition to oxidative stress and LC-PUFAs peroxidation, other stress-related mechanisms may also contribute to the development of various CNS malfunctions, and a good example of such mechanisms is the process of lipofuscin formation occurring particularly in the retina, an integral part of the CNS. The retinal lipofuscin is formed and accumulated by the retinal pigment epithelial (RPE) cells as a consequence of both visual process taking place in photoreceptor-RPE functional complex and metabolic insufficiency of RPE lysosomal compartment. Among various retinal lipofuscin constituents, bisretinoids, originating from all-trans retinal substrate — a photometabolite of visual pigment cofactor 11-cis-retinal (responsible for photon capturing), are endowed with cytotoxic and complement-activating potential which increases upon illumination and oxidation. This survey deals with oxidative stress, PUFAs (especially DHA) peroxidation products of carboxyalkylpyrrole type and bisretinoids as potential inducers of the CNS pathology. A focus is put on vision-threatening disease, i.e., age-related macular degeneration (AMD), as an example of the CNS disorder whose pathogenesis has strong background in both oxidative stress and lipid peroxidation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A2E:

–N-retinylidene-N-retinylethanolamine

AGE:

–advanced glycation endproduct

ALA:

–α-linolenic acid

AMD:

–age-related macular degeneration

ARA:

–arachidonic acid

AT-RAL:

–all-trans retinal

AT-RvD:

–aspirin-triggered resolvin

CAP:

–carboxyalkylpyrrole

CEP:

–2-(ω-carb-oxyethyl)pyrrole

CFH:

–complement factor H

CHP:

–2-(ω-carboxyheptyl)pyrrole

CNS:

–central nervous system

CNV:

–choroidal neovascularization

CPP:

–2-((ω-carboxypropyl)pyr-role

DHA:

–docosahexaenoic acid

DPA:

–docosapentaenoic acid

EP:

–ethylpyrrole

EPA:

–eicosapentaenoic acid

FA:

–fatty acid

GLA:

–γ-linoleic acid

HHE:

–4-hydroxy-hexenal

HNE:

–4-hydroxy-nonenal

HOAA:

–hydroxy-ω-oxoalkenoic acid

HODA:

–9-hydroxy-12-oxydec-10-enoic acid

HOHA:

–4-hydroxy-7-oxyhept-5-enoic acid

HOOA:

–5-hydroxy-8-oxyoct-6-enoic acid

HSA:

–human serum albumin

LA:

–linoleic acid

MAC:

–membrane attack complex

MDA:

–malondialdehyde

POS:

–photoreceptor outer segment

LC-PUFA:

–long-chain polyunsaturated fatty acid

MSA:

–mouse serum albumin

NPD1:

–neuroprotectin-1

PP:

–pentylpyrrole

PUFA:

–polyunsaturated fatty acid

RAL:

–retinal

REs:

–retinol esters

RNS:

–reactive nitrogen species

ROL:

–retinol

ROS:

–reactive oxygen species

RPE:

–retinal pigment epithelium

RvD:

–resolvin D

RvE:

–resolvin E

SOD:

–superoxide dismutase

TLR:

–toll-like receptor

TNFα:

–tumor necrosis factor α

VEGF:

–vascular endothelial growth factor

References

  1. Alfadda AA, Sallam RM: Reactive oxygen species in health and disease. J Biomed Biotechnol, 2012, 2012:936486, doi: 10.1155/2012/936486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Algvere PV, Marshall J, Seregard S: Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmol Scand, 2006, 84, 4–15.

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez RA, Aguirre GD, Acland GM, Anderson RE: Docosapentaenoic acid is converted to docosahexaenoic acid in the retinas of normal and prcd-affected minature poodle dogs. Invest Ophthalmol Vis Sci, 1994, 35, 402–408.

    CAS  PubMed  Google Scholar 

  4. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, Hancox LS et al.: The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res, 2010, 29, 95–112.

    Article  CAS  PubMed  Google Scholar 

  5. Bazan NG: Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci, 2006, 29, 263–271.

    Article  CAS  PubMed  Google Scholar 

  6. Bazan NG: Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer disease. J Lipid Res, 2009, 50, S400–S405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bazan NG, Molina MF, Gordon WC: Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr, 2011, 31, 321–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beatty S, Koh H, Phil M, Henson D, Boulton M: The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol, 2000, 45, 115–134.

    Article  CAS  PubMed  Google Scholar 

  9. Bhutto I, Lutty G: Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaries complex. Mol Asp Med, 2012, 33, 295–317.

    Article  CAS  Google Scholar 

  10. Bhandary B, Marahatta A, Kim HR, Chae HJ: An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci, 2012, 14, 343–356.

    Article  CAS  Google Scholar 

  11. Cai J, Nelson KC, Wu M, Sternberg P, Jones DP: Oxidative damage and protection of the RPE. Prog Retin Eye Res, 2000, 19, 205–221.

    Article  CAS  PubMed  Google Scholar 

  12. Cai X, McGinnis JF: Oxidative stress: the Achilles’ heel of neurodegenerative diseases of the retina. Front Biosci, 2012, 17, 1976–1995.

    Article  CAS  Google Scholar 

  13. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M et al.: Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA, 2002, 99, 14682–14687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Del Rio LA: Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys, 2011, 506, 1–11.

    Article  PubMed  CAS  Google Scholar 

  15. Dröge W: Free radicals in the physiological control of cell control. Physiol Rev, 2002, 82, 47–95.

    Article  PubMed  Google Scholar 

  16. Ebrahem Q, Renganathan K, Sears J, Vasanji A, Gu X, Lu L, Salomon RG et al.: Carboxyethylpyrrole oxidative protein modifications stimulate neovascularization: implications for age-related macular degeneration. Proc Natl Acad Sci USA, 2006, 103, 13480–13484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. EFSA Panel on Dietetic Products, Nutrition and Allergies: Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J, 2012, 10, 2815.

    Google Scholar 

  18. Evans TA, Siedlak SL, Lu L, Fu X, Wang Z, McGinnis WR, Fakhoury E et al.: The autistic phenotype exhibits a remarkably localized modification of brain protein by products of free radical-induced lipid oxidation. Am J Biotechnol Biochem, 2008, 4, 61–72.

    Article  CAS  Google Scholar 

  19. Fossel M: Cells, Aging and Human Disease. Oxford University Press, New York, 2004, pp. 504.

    Google Scholar 

  20. Gaillard ER, Atherton SJ, Eldred G, Dillon J: Photophysical studies on human retinal lipofuscin. Photochem Photobiol, 1995, 61, 448–453.

    Article  CAS  PubMed  Google Scholar 

  21. Gu X, Meer SG, Miyagi M, Rayborn ME, Hollyfield JG, Crabb JW, Salomon RG: Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem, 2003, 278, 42027–42035.

    Article  CAS  PubMed  Google Scholar 

  22. Gu X, Sun M, Gugiu B, Hazen S, Crabb JW, Salomon RG: Oxidatively truncated docosahexaenoate phospholipids: total synthesis, generation, and peptide adduction chemistry. J Org Chem, 2003, 68, 3749–3761.

    Article  CAS  PubMed  Google Scholar 

  23. Hageman GS, Luthert PJ, Chong NH, Johnson LV, Anderson DH, Mullins RF: An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res, 2001, 20, 705–732.

    Article  CAS  PubMed  Google Scholar 

  24. Harman D: Aging — a theory based on free-radical and radiation-chemistry. J Gerontol, 1956, 11, 298–300.

    Article  CAS  PubMed  Google Scholar 

  25. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL et al.: Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med, 2008, 14, 194–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hollyfield JG, Perez VL, Salomon RG: A hapten generated from an oxidation fragment of docosahexaenoic acid is sufficient to initiate age-related macular degeneration. Mol Neurobiol, 2010, 41, 290–298.

    Article  CAS  PubMed  Google Scholar 

  27. Hollyfield JG, Salomon RG, Crabb JW: Proteomic approaches to understanding age-related macular degeneration. Adv Exp Med Biol, 2003, 533, 83–89.

    Article  CAS  PubMed  Google Scholar 

  28. Hunter JJ, Morgan JIW, Merigan WH, Sliney DH, Sparrow JR, Williams DR: The susceptibility of the retina to photodamage from visible light. Prog Retin Eye Res, 2012, 31, 28–42.

    Article  PubMed  Google Scholar 

  29. Issa PC, Chong NV, Scholl HPN: The significance of the complement system for the pathogenesis of age-related macular degeneration — current evidence and translation into clinical application. Graefes Arch Clin Exp Ophthalmol, 2011, 249, 163–174.

    Article  CAS  Google Scholar 

  30. Jang YP, Matsuda H, Itagaki Y, Nakanishi K, Sparrow JR: Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin. J Biol Chem, 2005, 280, 39732–39739.

    Article  CAS  PubMed  Google Scholar 

  31. Jarret SG, Boulton ME: Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med, 2012, 33, 399–417.

    Article  CAS  Google Scholar 

  32. Kaur K, Salomon RG, O’Neil J, Hoff HF: (Carboxyalkyl)pyrroles in human plasma and oxidized low-density lipoproteins. Chem Res Toxicol, 1997, 10, 1387–1396.

    Article  CAS  PubMed  Google Scholar 

  33. Khandhadia S, Cipriani V, Yates JRW, Lotery AJ: Age-related macular degeneration and the complement system. Immunobiology, 2012, 217, 127–146.

    Article  CAS  PubMed  Google Scholar 

  34. Kijlstra A, Tian Y, Kelly ER, Berendschot TTJM: Lutein: more than just a filter for blue light. Prog Retin Eye Res, 2012, 31, 303–315.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SR, Jang YP, Jockusch S, Fishkin NE, Turro NJ, Sparrow JR: The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci USA, 2007, 104, 19273–19278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kinnunen K, Petrovski G, Moe MC, Berta A, Kaarniranta K: Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol, 2012, 90, 299–309.

    Article  CAS  PubMed  Google Scholar 

  37. Klettner A: Oxidative stress induced cellular signaling in RPE cells. Front Biosci (Schol Ed), 2012, 4, 392–411.

    Article  Google Scholar 

  38. Krohne TU, Kaemmerer E, Holz FG, Kopitz J: Lipid peroxidation products reduce lysosomal protease activities in human retinal pigment epithelial cells via two different mechanisms of action. Exp Eye Res, 2010, 90, 261–266.

    Article  CAS  PubMed  Google Scholar 

  39. Lin PY, Huang SY, Su KP: A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry, 2010, 68, 140–147.

    Article  CAS  PubMed  Google Scholar 

  40. Liu A, Chang J, Lin Y, Shen Z, Bernstein PS: Longchain and very long-chain polyunsaturated fatty acids in ocular aging and age-related macular degeneration. J Lipid Res, 2010, 51, 3217–3229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu L, Gu X, Hong L, Laird J, Jaffe K, Choi J, Crabb JW, Salomon RG: Synthesis and structural characterization of carboxyethylpyrrole-modified proteins: mediators of age-related macular degeneration. Bioorg Med Chem, 2009, 17, 7548–7561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lukiw WJ: Docosahexaenoic acid and amyloid-β peptide signaling in Alzheimer’s disease. World Rev Nutr Diet, 2009, 99, 55–70.

    Article  CAS  PubMed  Google Scholar 

  43. Malhotra JD, Kaufman RJ: Endoplasmic reticulum stress and oxidative stress: a vicious cycle or double-edged sword? Antioxid Redox Signal, 2007, 9, 2277–2293.

    Article  CAS  PubMed  Google Scholar 

  44. Mettu PS, Wielgus AR, Ong S, Cousins SW: Retinal pigment epithelium response to oxidant injury in the pathogenesis of early age-related macular degeneration. Mol Aspects Med, 2012, 33, 376–398.

    Article  CAS  PubMed  Google Scholar 

  45. Mukherjee PK, Chwala A, Loayza MS, Bazan NG: Docosanoids are multifunctional regulators of neuronal cell integrity and fate: significance in aging and disease. Prostaglandins Leukot Essent Fatty Acids (PLEFA), 2007, 77, 233–238.

    Article  CAS  Google Scholar 

  46. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG: Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA, 2004, 101, 8491–8496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murdaugh LS, Mandal S, Dill AE, Dillon J, Simon JD, Gaillard ER: Compositional studies of human RPE lipofuscin: mechanmsms of molecular modifications. J Mass Spectrom, 2011, 46, 90–95.

    Article  CAS  PubMed  Google Scholar 

  48. Novo E, Parola M: Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair, 2008, 1, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Nowak JZ: Age-related macular degeneration (AMD): a critical appraisal of diet and dietary supplements as therapeutic modalities. Mil Pharm Med, 2012, 4, 1–16.

    Google Scholar 

  50. Nowak JZ: Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep, 2006, 58, 353–363.

    CAS  PubMed  Google Scholar 

  51. Nowak JZ: Biosynthesis and characteristics of antiinflammatory proresolving derivatives of omega-3 and omega-6 polyunsaturated fatty acids. Mil Pharm Med, 2011, 3, 30–41.

    Google Scholar 

  52. Nowak JZ: Inflammation: course and role of PUFA-derived lipid mediators in the resolution of inflammatory reaction. Mil Pharm Med, 2011, 1, 20–30.

    Google Scholar 

  53. Nowak JZ: The isolated retina as a model of the CNS in pharmacology. Trends Pharmacol Sci, 1988, 9, 80–82.

    Article  CAS  PubMed  Google Scholar 

  54. Ozawa Y, Sasaki M, Takahashi N, Kamoshita M, Miyake S, Tsubota K: Neuroprotective effects of lutein in the retina. Curr Pharm Des, 2012, 18, 51–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peet M: Omega-3 polyunsaturated fatty acids in the treatment of schizophrenia. Isr J Psychiaty Relat Sci, 2008, 45, 19–25.

    Google Scholar 

  56. Plafker SM, O’Mealey GB, Szweda LI: Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. Int Rev Cell Mol Biol, 2012, 298, 135–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Querques G, Forte R, Souied EH: Retina and omega-3. J Nutr Metab, 2011, article ID 748361.

    Google Scholar 

  58. Roberts JE: Ocular phototoxicity. J Photochem Photobiol B, 2001, 64, 136–143.

    Article  CAS  PubMed  Google Scholar 

  59. Ross BM: Omega-3 polyunsaturated fatty acids and anxiety disorders. Prostaglandins Leukot Essent Fatty Acids, 2009, 81, 309–312.

    Article  CAS  PubMed  Google Scholar 

  60. Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, Sarna T: Blue light-induced reactivityof retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem, 1995, 270, 18825–18830.

    Article  CAS  PubMed  Google Scholar 

  61. Rozanowska M, Pawlak A, Rozanowska B, Skumatz C, Zareba M, Boulton ME, Burke JM et al.: Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components. Invest Ophthalmol Vis Sci, 2004, 45, 1052–1060.

    Article  PubMed  Google Scholar 

  62. Salomon RG, Hong L, Hollyfield JG: Discovery of carboxyethylpyrroles (CEPs): critical insights into AMD, autism, cancer, and wound healing from basic research on the chemistry of oxidized phospholipids. Chem Res Toxicol, 2011, 24, 1803–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sayre LM, Sha W, Xu G, Kaur K, Nadkarni D, Subbanagounder G, Salomon RG: Immunochemical evidence supporting 2-pentylpyrrole formation on proteins exposed to 4-hydroxy-2-nonenal. Chem Res Toxicol, 1996, 9, 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  64. Schutt F, Bergmann M, Holz FG, Dithmar S, Volcker HE, Kopitz J: Accumulation of A2E in mitochondrial membranes of cultured RPE cells. Graefe’s Arch Clin Exp Ophthalmol, 2007, 245, 391–398.

    Article  CAS  Google Scholar 

  65. Schutt F, Davies S, Kopitz J, Holz FG, Boulton ME: Photodamage to human RPE cells by A2E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci, 2000, 41, 2303–2308.

    CAS  PubMed  Google Scholar 

  66. Serhan CN, Petasis NA: Resolvins and protectins in inflammation resolution. Chem Rev, 2011, 111, 5922–5943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shinohara M, Mirakaj V, Serhan CN: Functional metabolomics reveals novel active products in the DHA metabolome. Front Immunol, 2012, 3, 81.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sparrow JR: Bisretinoids of RPE lipofuscin: trigger for complement activation in age-related macular degeneration. Adv Exp Med Biol, 2010, 703, 63–74.

    Article  CAS  PubMed  Google Scholar 

  69. Sparrow JR, Boulton M: RPE lipofuscin and its role in retinal photobiology. Exp Eye Res, 2005, 80, 595–606.

    Article  CAS  PubMed  Google Scholar 

  70. Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, Zhou J: The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res, 2012, 31, 121–135.

    Article  CAS  PubMed  Google Scholar 

  71. Sparrow JR, Nakanishi K, Parish CA: The lipofuscin fluorofore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci, 2000, 41, 1981–1989.

    CAS  PubMed  Google Scholar 

  72. Tanito M, Brush RS, Elliott MH, Wicker LD, Henry KR, Anderson RE: High levels of retinal membrane docosahexaenoic acid increase susceptibility to stress-induced degradation. J Lipid Res, 2009, 50, 807–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Terman A, Gustafsson B, Brunk UT: Mitochondrial damage and intralysosomal degradation in cellular aging. Mol Asp Med, 2006, 27, 471–482.

    Article  CAS  Google Scholar 

  74. Thurman JM, Renner B, Kunchihapautham K, Fereirra VP, Pangburn MK, Ablinczy Z, Tomlinson S et al.: Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem, 2009, 284, 16939–16947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Trouw LA, Daha MR: Role of complement in innate immunity and host defence. Immunol Lett, 2011, 138, 35–37.

    Article  CAS  PubMed  Google Scholar 

  76. Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D, Handa JT et al.: Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in non-diabetics). Aging Cell, 2012, 11, 1–13.

    Article  CAS  PubMed  Google Scholar 

  77. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Tesler J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007, 39, 44–84.

    Article  CAS  PubMed  Google Scholar 

  78. Wallace DC, Brown MD, Melov S, Graham B, Lott M: Mitochondrial biology, degenerative diseases and aging. Biofactors, 1998, 7, 187–190.

    Article  CAS  PubMed  Google Scholar 

  79. Wang N, Anderson RE: Enrichment of polyunsaturated fatty acids from rat retinal pigment epithelium to rod outer segments. Curr Eye Res, 1992, 11, 783–791.

    Article  CAS  PubMed  Google Scholar 

  80. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA et al.: Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature, 2010, 467, 972–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wiktorowska-Owczarek A, Nowak JZ: Oxidative damage in age-related macular degeneration (AMD) and antioxidant protection as a therapeutic strategy. Pol J Environ Stud, 2006, 15, 69–72.

    Google Scholar 

  82. Wu Y, Yanase E, Feng X, Siegel MM, Sparrow JR: Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci USA, 2010, 107, 7275–7280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu H, Chen M, Forrester JV: Para-inflammation in the aging retina. Prog Retin Eye Res, 2009, 28, 348–368.

    Article  PubMed  CAS  Google Scholar 

  84. Yu DY, Cringle SJ: Retinal degeneration and local oxygen metabolism. Exp Eye Res, 2005, 80, 745–751.

    Article  CAS  PubMed  Google Scholar 

  85. Zhou J, Jang YP, Kim SR, Sparrow JR: Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci USA, 2006, 103, 16182–16187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Z. Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, J.Z. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration. Pharmacol. Rep 65, 288–304 (2013). https://doi.org/10.1016/S1734-1140(13)71005-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(13)71005-3

Key words

Navigation