Skip to main content
Log in

Activation of orexin/hypocretin type 1 receptors stimulates cAMP synthesis in primary cultures of rat astrocytes

  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

The effects of orexins, which are also named hypocretins, on cAMP formation were examined in primary cultures of rat astrocytes. Orexin A, an agonist of OX1 and OX2 receptors, stimulated cAMP production with an EC50 value of 0.68 μM and potentiated the forskolin-induced increase in the nucleotide synthesis. [Ala11-D-Leu15]orexin B, an agonist of OX2 receptors, was inactive. The effects of orexin A were antagonized by SB 408124, a selective blocker of OX1 receptors, but were not affected by TCS OX2 29, a selective antagonist of OX2 receptors. We hypothesized that the activation of OX1 receptors stimulated cAMP synthesis in primary rat astrocyte cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP:

cyclic 3’,5’-adenosine monophosphate

GFAP:

glial fibrillary acidic protein

IBMX:

3-isobutyl-l-methylxanthine

OX1:

orexin type 1 receptor

OX2:

orexin type 2 receptor

SB 408124:

N-(6,8-difluoro-2-methyl-4-quinolinyl)-N’-[4-dimethylamino)phenyl]urea

TCS OX2 29:

(2S)-1-(3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-3,3-di-methyl-2-[(4-pyridinylmethyl)amino]-1-butanone hydrochloride

References

  1. Ammoun S, Holmqvist T, Shariatmadari R, Oonk HB, Detheux M, Parmentier M, Åkerman KE, Kukkonen JP: Distinct recognition of OX1 and OX2 receptors by orexin peptides. J Pharmacol Exp Ther, 2003, 305, 507–514.

    Article  CAS  Google Scholar 

  2. Asahi S, Egashira S-I, Matsuda M, Iwaasa H, Kanatani A, Ohkubo M, Ihara M, Morishima H: Development of an orexin-2 receptor selective agonist, [Ala11, D-Leu15]orexin-B. Bioorg Med Chem Lett, 2003, 13, 111–113.

    Article  CAS  Google Scholar 

  3. Gorojankina T, Grébert D, Salesse R, Tanfin Z, Caillol M: Study of orexin signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: Multiple orexin signalling pathways. Reg Peptides, 2007, 141, 73–85.

    Article  CAS  Google Scholar 

  4. Heinonen MV, Purhonen AK, Mäkelä KA, Herzig KH: Functions of orexins in peripheral tissues. Acta Physiol (Oxford), 2008, 192, 471–485.

    Article  CAS  Google Scholar 

  5. Hertz L, Juurlink BHJ, Szuchet S: Cell cultures. In: Handbook of Neurochemistry. Ed. Lajtha A, Plenum Press, New York, 1985, vol. 8, 603–661.

    Google Scholar 

  6. Hirose M, Egashira S, Goto Y, Hashihayata T, Ohtake N, Iwaasa H, Hata M et al.: N-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline: the first orexin-2 receptor selective non-peptidic antagonist. Bioorg Med Chem Lett, 2003, 13, 4497–4499.

    Article  CAS  Google Scholar 

  7. Holmqvist T, Johansson L, Ostman M, Ammoun S, Åkerman KE, Kukkonen JP: OX1 orexin receptors couple to adenylyl cyclase regulation via multiple mechanisms. J Biol Chem, 2005, 280, 6570–6579.

    Article  CAS  Google Scholar 

  8. Jóźwiak-Bębenista M, Dejda A, Nowak JZ: Effects of PACAP, VIP and related peptides on cAMP formation in rat neuronal and astrocyte cultures and cerebral cortical slices. Pharmacol Rep, 2007, 59, 414–420.

    PubMed  Google Scholar 

  9. Kagerer SM, Jöhren O: Interaction of orexins/hypocretins with adrenocortical functions. Acta Physiol (Oxford), 2010, 198, 361–371.

    Article  CAS  Google Scholar 

  10. Kamenetsky M, Middelhaufe S., Bank EM, Levin LR, Buck J, Steegborn C: Molecular details on cAMP generation in mammalian cells: A tale of two systems. J Mol Biol, 2006, 362, 623–639

    Article  CAS  Google Scholar 

  11. Kukkonen JP, Holmqvist T, Ammoun S, Åkerman KE: Functions of the orexinergic/hypocretinergic system. Am J Physiol Cell Physiol, 2002, 283, C1567–1591.

    Article  CAS  Google Scholar 

  12. Magga J, Bart G, Oker-Blom C, Kukkonen JP, Åkerman KE, Näsman J: Agonist potency differentiates G protein activation and Ca2+ signalling by the orexin receptor type 1. Biochem Pharmacol, 2006, 71, 827–836.

    Article  CAS  Google Scholar 

  13. Matsuki T, Sakurai T: Orexins and orexin receptors: from molecules to integrative physiology. Results Probl Cell Differ, 2008, 46, 27–55.

    Article  CAS  Google Scholar 

  14. Porter RA, Chan WN, Coulton S, Johns A, Hadley MS, Widdowson K, Jerman JC et al.: 1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg Med Chem Lett, 2001, 11, 1907–1910.

    Article  CAS  Google Scholar 

  15. Ramanjaneya M, Conner AC, Chen J, Stanfield PR, Randeva HS: Orexins stimulate steroidogenic acute regulatory protein expression through multiple signaling pathways in human adrenal H295R cells. Endocrinology, 2008, 149, 4106–4115.

    Article  CAS  Google Scholar 

  16. Rouet-Benzineb P, Rouyer-Fessard C, Jarry A, Avondo V, Pouzet C, Yanagisawa M, Laboisse C et al.: Orexins acting at native OX1 receptor in colon cancer and neuro-blastoma cells or at recombinant OX1 receptor suppress cell growth by inducing apoptosis. J Biol Chem, 2004, 279, 45875–4586.

    Article  CAS  Google Scholar 

  17. Sadana R, Dessauer CW: Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals, 2009, 17, 5–22.

    Article  CAS  Google Scholar 

  18. Shimizu H, Daly JW, Creveling CR: A radioisotopic method for measuring the formation of adenosine 3’,5’-monophosphate in incubated slices of brain. J Neurochem, 1969, 16, 1609–1619.

    Article  CAS  Google Scholar 

  19. Tang J, Chen J, Ramanjaneya M, Punn A, Conner AC, Randeva HS: The signaling profile of recombinant human orexin-2 receptor. Cell Sign, 2008, 20, 1651–1661.

    Article  CAS  Google Scholar 

  20. Urbańska A, Sokołowska P, Woldan-Tambor A, Biegańska K, Brix B, Jöhren O, Namiecińska M, Zawilska JB: Orexins/hypocretins acting at Gi protein-coupled OX2 receptors inhibit cyclic AMP synthesis in the primary neuronal cultures. J Mol Neurosci, 2011, doi: 10.1007/s12031-011-9526-2.

    Google Scholar 

  21. Zhu Y, Miwa Y, Yamanaka A, Yada T, Shibahara M, Abe Y, Samurai T, Goto K: Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J Pharmacol Sci, 2003, 92, 259–266.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta B. Zawilska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woldan-Tambor, A., Biegańska, K., Wiktorowska-Owczarek, A. et al. Activation of orexin/hypocretin type 1 receptors stimulates cAMP synthesis in primary cultures of rat astrocytes. Pharmacol. Rep 63, 717–723 (2011). https://doi.org/10.1016/S1734-1140(11)70583-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(11)70583-7

Keywords

Navigation