Skip to main content

Orexins and Orexin Receptors: From Molecules to Integrative Physiology

  • Chapter
  • First Online:
Orphan G Protein-Coupled Receptors and Novel Neuropeptides

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 46))

Abstract

Recent studies have implicated the orexin system as a critical regulator of sleep/wake states, feeding behavior, and reward processes. Orexin deficiency results in narcolepsy-cataplexy in humans, dogs, and rodents, suggesting that the orexin system is particularly important for maintenance of wakefulness. Orexin agonists and antagonists are thought to be promising avenues toward the treatment of sleep disorders, eating disorders, and drug addiction. In this chapter, we discuss the current understanding of the physiological roles of orexins in regulation of arousal, sleep/wake states, energy homeostasis, and reward systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama M, Yuasa T, Hayasaka N, Horikawa K, Sakurai T, Shibata S (2004) Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur J Neurosci 20:3054–3062

    PubMed  Google Scholar 

  • Al-Barazanji KA, Wilson S, Baker J, Jessop DS, Harbuz MS (2001) Central orexin-A activates hypothalamic-pituitary-adrenal axis and stimulates hypothalamic corticotropin releasing factor and arginine vasopressin neurones in conscious rats. J Neuroendocrinol 13:421–424

    PubMed  CAS  Google Scholar 

  • Alam MN, Szymusiak R, Gong H, King J, McGinty D (1999) Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis. J Physiol 521:679–690

    PubMed  CAS  Google Scholar 

  • Alvarez CE, Sutcliffe JG (2002) Hypocretin is an early member of the incretin gene family. Neurosci Lett 324:169–172

    PubMed  CAS  Google Scholar 

  • Anand BK, Brobeck JR (1951) Localization of a feeding center in the hypothalamus of the rat. Proc Soc Exp Biol Med 77:323–324

    PubMed  CAS  Google Scholar 

  • Antunes VR, Brailoiu GC, Kwok EH, Scruggs P, Dun NJ (2001) Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro. Am J Physiol Regul Integr Comp Physiol 281:R1801–1807

    PubMed  CAS  Google Scholar 

  • Baldo BA, Gual-Bonilla L, Sijapati K, Daniel RA, Landry CF, Kelley AE (2004) Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur J Neurosci 19:376–386

    PubMed  Google Scholar 

  • Bayer L, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Muhlethaler M, Serafin M (2002) Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J Neurosci 22:7835–7839

    PubMed  CAS  Google Scholar 

  • Bayer L, Eggermann E, Serafin M, Saint-Mleux B, Machard D, Jones B, Muhlethaler M (2001) Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci 14:1571–1575

    PubMed  CAS  Google Scholar 

  • Bayer L, Serafin M, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Muhlethaler M (2004) Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. J Neurosci 24:6760–6764

    PubMed  CAS  Google Scholar 

  • Bernardis LL, Bellinger LL (1996) The lateral hypothalamic area revisited: ingestive behavior. Neurosci Biobehav Rev 20:189–287

    PubMed  CAS  Google Scholar 

  • Bingham MJ, Cai J, Deehan MR (2006) Eating, sleeping and rewarding: orexin receptors and their antagonists. Curr Opin Drug Discov Devel 9:551–559

    PubMed  CAS  Google Scholar 

  • Bingham S, Davey PT, Babbs AJ, Irving EA, Sammons MJ, Wyles M, Jeffrey P, Cutler L, Riba I, Johns A et al. (2001) Orexin-A, an hypothalamic peptide with analgesic properties. Pain 92:81–90

    PubMed  CAS  Google Scholar 

  • Bisetti A, Cvetkovic V, Serafin M, Bayer L, Machard D, Jones BE, Muhlethaler M (2006) Excitatory action of hypocretin/orexin on neurons of the central medial amygdala. Neuroscience 142:999–1004

    PubMed  CAS  Google Scholar 

  • Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A (2006) Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49:589–601

    PubMed  CAS  Google Scholar 

  • Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, de Lecea L (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci USA 102:19168–19173

    PubMed  CAS  Google Scholar 

  • Brisbare-Roch C, Dingemanse J, Koberstein R, Hoever P, Aissaoui H, Flores S, Mueller C, Nayler O, van Gerven J, de Haas SL et al. (2007) Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med 13:150–155

    PubMed  CAS  Google Scholar 

  • Brown RE, Sergeeva O, Eriksson KS, Haas HL (2001) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40:457–459

    PubMed  CAS  Google Scholar 

  • Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline) J Neurosci 22:8850–8859

    PubMed  CAS  Google Scholar 

  • Brunton PJ, Russell JA (2003) Hypothalamic-pituitary-adrenal responses to centrally administered orexin-A are suppressed in pregnant rats. J Neuroendocrinol 15:633–637

    PubMed  CAS  Google Scholar 

  • Burdakov D, Gerasimenko O, Verkhratsky A (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25:2429–2433

    PubMed  CAS  Google Scholar 

  • Burdakov D, Jensen LT, Alexopoulos H, Williams RH, Fearon IM, O'Kelly I, Gerasimenko O, Fugger L, Verkhratsky A (2006) Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50:711–722

    PubMed  CAS  Google Scholar 

  • Burdakov D, Liss B, Ashcroft FM (2003) Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium–calcium exchanger. J Neurosci 23:4951–4957

    PubMed  CAS  Google Scholar 

  • Burlet S, Tyler CJ, Leonard CS (2002) Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: Implication for wakefulness and Narcolepsy. J Neurosci 22:2862–2872

    PubMed  CAS  Google Scholar 

  • Challet E, Pevet P, Malan A (1997) Effect of prolonged fasting and subsequent refeeding on free-running rhythms of temperature and locomotor activity in rats. Behav Brain Res 84:275–284

    PubMed  CAS  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell TE, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y et al. (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    PubMed  CAS  Google Scholar 

  • Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96:748–753

    PubMed  CAS  Google Scholar 

  • Dauvilliers Y, Arnulf I, Mignot E (2007) Narcolepsy with cataplexy. Lancet 369:499–511

    PubMed  Google Scholar 

  • de Lecea L, Jones BE, Boutrel B, Borgland SL, Nishino S, Bubser M, DiLeone R (2006) Addiction and arousal: alternative roles of hypothalamic peptides. J Neurosci 26:10372–10375

    PubMed  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327

    PubMed  Google Scholar 

  • Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE, Muhlethaler M (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108:177–181

    PubMed  CAS  Google Scholar 

  • Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB, Elmquist JK (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23:775–786

    PubMed  CAS  Google Scholar 

  • Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB (2005) Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 493:63–71

    PubMed  CAS  Google Scholar 

  • Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    PubMed  CAS  Google Scholar 

  • Engelmann M, Landgraf R, Wotjak CT (2004) The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 25:132–149

    PubMed  CAS  Google Scholar 

  • Fadel J, Deutch AY (2002) Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111:379–387

    PubMed  CAS  Google Scholar 

  • Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404:992–995

    PubMed  CAS  Google Scholar 

  • Geerling JC, Mettenleiter TC, Loewy AD (2003) Orexin neurons project to diverse sympathetic outflow systems. Neuroscience 122:541–550

    PubMed  CAS  Google Scholar 

  • Gooley JJ, Schomer A, Saper CB (2006) Nat Neurosci 9:398–407

    PubMed  CAS  Google Scholar 

  • Griffond B, Risold PY, Jacquemard C, Colard C, Fellmann D (1999) Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci Lett 262:77–80

    PubMed  CAS  Google Scholar 

  • Guilleminault C, Gelb M (1995) Clinical aspects and features of cataplexy. Adv Neurol 67:65–77

    PubMed  CAS  Google Scholar 

  • Guilleminault C, Heinzer R, Mignot E, Black J (1998) Investigations into the neurologic basis of narcolepsy. Neurology 50:S8–15

    PubMed  CAS  Google Scholar 

  • Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routledge C, Hemmati P et al. (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA 96:10911–10916

    PubMed  CAS  Google Scholar 

  • Hakansson M, de Lecea L, Sutcliffe JG, Yanagisawa M, Meister B (1999) Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. J Neuroendocrinol 11:653–663

    PubMed  CAS  Google Scholar 

  • Hakansson ML, Meiste RB (1998) Transcription factor STAT3 in leptin target neurons of the rat hypothalamus. Neuroendocrinology 68:420–427

    PubMed  CAS  Google Scholar 

  • Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354

    PubMed  CAS  Google Scholar 

  • Hara J, Yanagisawa M, Sakurai T (2005) Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci Lett 380:239–242

    PubMed  CAS  Google Scholar 

  • Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559

    PubMed  CAS  Google Scholar 

  • Haynes AC, Chapman H, Taylor C, Moore GB, Cawthorne MA, Tadayyon M, Clapham JC, Arch JR (2002) Anorectic, thermogenic and anti-obesity activity of a selective orexin-1 receptor antagonist in ob/ob mice. Regul Pept 104:153–159

    PubMed  CAS  Google Scholar 

  • Haynes AC, Jackson B, Chapman H, Tadayyon M, Johns A, Porter RA, Arch JR (2000) A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul Pept 96:45–51

    PubMed  CAS  Google Scholar 

  • Hervieu GJ, Cluderay JE, Harrison DC, Roberts JC, Leslie RA (2001) Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience 103:777–797

    PubMed  CAS  Google Scholar 

  • Honda Y, Doi Y, Ninomiya R, Ninomiya C (1986) Increased frequency of non-insulin-dependent diabetes mellitus among narcoleptic patients. Sleep 9:254–259

    PubMed  CAS  Google Scholar 

  • Horvath TL, Gao XB (2005) Input organization and plasticity of hypocretin neurons: possible clues to obesity's association with insomnia. Cell Metab 1:279–286

    PubMed  CAS  Google Scholar 

  • Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, van Den Pol AN (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 415:145–159

    PubMed  CAS  Google Scholar 

  • Huang H, Ghosh P, van den Pol AN (2006) Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal. J Neurophysiol 95:1656–1668

    PubMed  Google Scholar 

  • Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe T, Urade Y, Hayaishi O (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA 98:9965–9970

    PubMed  CAS  Google Scholar 

  • Itoh T, Murai S, Nagahama H, Miyate H, Abe E, Fujiwara H, Saito Y (1990) Effects of 24-hr fasting on methamphetamine- and apomorphine-induced locomotor activities, and on monoamine metabolism in mouse corpus striatum and nucleus accumbens. Pharmacol Biochem Behav 35:391–396

    PubMed  CAS  Google Scholar 

  • Jansen AS, Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD (1995) Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270:644–646

    PubMed  CAS  Google Scholar 

  • John J, Wu MF, Boehmer LN, Siegel JM (2004) Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42:619–634

    PubMed  CAS  Google Scholar 

  • Kajiyama S, Kawamoto M, Shiraishi S, Gaus S, Matsunaga A, Suyama H, Yuge O (2005) Spinal orexin-1 receptors mediate anti-hyperalgesic effects of intrathecally-administered orexins in diabetic neuropathic pain model rats. Brain Res 1044:76–86

    PubMed  CAS  Google Scholar 

  • Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, Komuro I, Fukuda Y, Kuwaki T (2003) Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 285:R581–593

    PubMed  Google Scholar 

  • Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23:7–11

    PubMed  CAS  Google Scholar 

  • Kuru M, Ueta Y, Serino R, Nakazato M, Yamamoto Y, Shibuya I, Yamashita H (2000) Centrally administered orexin/hypocretin activates HPA axis in rats. Neuroreport 11:1977–1980

    PubMed  CAS  Google Scholar 

  • Lambe EK, Aghajanian GK (2003) Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice. Neuron 40:139–150

    PubMed  CAS  Google Scholar 

  • Lammers GJ, Pijl H, Iestra J, Langius JA, Buunk G, Meinders AE (1996) Spontaneous food choice in narcolepsy. Sleep 19:75–76

    PubMed  CAS  Google Scholar 

  • Landry GJ, Simon MM, Webb IC, Mistlberger RE (2006) Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am J Physiol Regul Integr Comp Physiol 290:R1527–1534

    PubMed  CAS  Google Scholar 

  • Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720

    PubMed  CAS  Google Scholar 

  • Li Y, Gao XB, Sakurai T, van den Pol AN (2002) Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36:1169–1181

    PubMed  CAS  Google Scholar 

  • Li Y, van den Pol AN (2006) Differential target-dependent actions of coexpressed inhibitory dynorphin and excitatory hypocretin/orexin neuropeptides. J Neurosci 26:13037–13047

    PubMed  CAS  Google Scholar 

  • Liu RJ, van den Pol AN, Aghajanian GK (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci 22:9453–9464

    PubMed  CAS  Google Scholar 

  • Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22:4568–4576

    PubMed  CAS  Google Scholar 

  • Lubkin M, Stricker-Krongrad A (1998) Independent feeding and metabolic actions of orexins in mice. Biochem Biophys Res Commun 253:241–245

    PubMed  CAS  Google Scholar 

  • Ma X, Zubcevic L, Bruning JC, Ashcroft FM, Burdakov D (2007) Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. J Neurosci 27:1529–1533

    PubMed  CAS  Google Scholar 

  • Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25

    PubMed  CAS  Google Scholar 

  • Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci USA 103:12150–12155

    PubMed  CAS  Google Scholar 

  • Mieda M, Williams SC, Sinton CM, Richardson JA, Sakurai T, Yanagisawa M (2004) Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J Neurosci 24:10493–10501

    PubMed  CAS  Google Scholar 

  • Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M (2004) Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci USA 101:4649–4654

    PubMed  CAS  Google Scholar 

  • Mignot E, Nishino S (2005) Emerging therapies in narcolepsy-cataplexy. Sleep 28:754–763

    PubMed  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798

    PubMed  CAS  Google Scholar 

  • Mitsuyoshi S (2005) Role of Barrington's nucleus in micturition. J Comp Neurol 493:21–26

    Google Scholar 

  • Mobarakeh JI, Takahashi K, Sakurada S, Nishino S, Watanabe H, Kato M, Yanai K (2005) Enhanced antinociception by intracerebroventricularly and intrathecally-administered orexin A and B (hypocretin-1 and -2) in mice. Peptides 26:767–777

    PubMed  CAS  Google Scholar 

  • Monda M, Viggiano AN, Viggiano A, Viggiano E, Lanza A, De Luca V (2005) Hyperthermic reactions induced by orexin A: role of the ventromedial hypothalamus. Eur J Neurosci 22:1169–1175

    PubMed  CAS  Google Scholar 

  • Moriguchi T, Sakurai T, Nambu T, Yanagisawa M, Goto K (1999) Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci Lett 264:101–104

    PubMed  CAS  Google Scholar 

  • Moriguchi T, Sakurai T, Takahashi S, Goto K, Yamamoto M (2002) The human prepro-orexin gene regulatory region that activates gene expression in the lateral region and represses it in the medial regions of the hypothalamus. J Biol Chem 277:16985–16992

    PubMed  CAS  Google Scholar 

  • Mullett MA, Billington CJ, Levine AS, Kotz CM (2000) Hypocretin I in the lateral hypothalamus activates key feeding-regulatory brain sites. Neuroreport 11:103–108

    PubMed  CAS  Google Scholar 

  • Muraki Y, Yamanaka A, Tsujino N, Kilduff TS, Goto K, Sakurai T (2004) Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci 24:7159–7166

    PubMed  CAS  Google Scholar 

  • Muroya S, Funahashi H, Yamanaka A, Kohno D, Uramura K, Nambu T, Shibahara M, Kuramochi M, Takigawa M, Yanagisawa M et al. (2004) Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci 19:1524–1534

    PubMed  Google Scholar 

  • Nakamura T, Uramura K, Nambu T, Yada T, Goto K, Yanagisawa M, Sakurai T (2000) Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res 873:181–187

    PubMed  CAS  Google Scholar 

  • Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827:243–260

    PubMed  CAS  Google Scholar 

  • Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, Miyatake M, Sakurai T, Yanagisawa M, Nakamachi T, Shioda S, Suzuki T (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26:398–405

    PubMed  CAS  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    PubMed  CAS  Google Scholar 

  • Sakamoto F, Yamada S, Ueta Y (2004) Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regul Pept 118:183–191

    PubMed  CAS  Google Scholar 

  • Sakurai T (2005) Reverse pharmacology of orexin: from an orphan GPCR to integrative physiology. Regul Pept 126:3–10

    PubMed  CAS  Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181

    PubMed  CAS  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    PubMed  CAS  Google Scholar 

  • Sakurai T, Moriguchi T, Furuya K, Kajiwara N, Nakamura T, Yanagisawa M, Goto K (1999) Structure and function of human prepro-orexin gene. J Biol Chem 274:17771–17776

    PubMed  CAS  Google Scholar 

  • Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K et al. (2005) Input of Orexin/Hypocretin Neurons Revealed by a Genetically Encoded Tracer in Mice. Neuron 46:297–308

    PubMed  CAS  Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    PubMed  CAS  Google Scholar 

  • Schuld A, Hebebrand J, Geller F, Pollmacher T (2000) Increased body-mass index in patients with narcolepsy. Lancet, pp 1274–1275

    Google Scholar 

  • Selbach O, Doreulee N, Bohla C, Eriksson KS, Sergeeva OA, Poelchen W, Brown RE, Haas HL (2004) Orexins/hypocretins cause sharp wave- and theta-related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling. Neuroscience 127:519–528

    PubMed  CAS  Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721

    PubMed  CAS  Google Scholar 

  • Shibahara M, Sakurai T, Nambu T, Takenouchi T, Iwaasa H, Egashira SI, Ihara M, Goto K (1999) Structure, tissue distribution, and pharmacological characterization of Xenopus orexins. Peptides 20:1169–1176

    PubMed  CAS  Google Scholar 

  • Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kannan H (1999) Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol 277:R1780–R1785

    PubMed  CAS  Google Scholar 

  • Siegel JM, Boehmer LN (2006) Narcolepsy and the hypocretin system – where motion meets emotion. Nat Clin Pract Neurol 2:548–556

    PubMed  CAS  Google Scholar 

  • Takahashi K, Koyama Y, Kayama Y, Yamamoto M (2002) Effects of orexin on the laterodorsal tegmental neurones. Psychiat Clin Neurosci 56:335–336

    CAS  Google Scholar 

  • Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y (2005) Orexinergic projections to the midbrain mediate alternation of emotional behavioral states from locomotion to cataplexy. J Physiol 568(Pt 3):1003–1020

    PubMed  CAS  Google Scholar 

  • Thorpe AJ, Kotz CM (2005) Orexin A in the nucleus accumbens stimulates feeding and locomotor activity. Brain Res 1050:156–162

    PubMed  CAS  Google Scholar 

  • van den Pol AN (1999) Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci 19:3171–3182

    PubMed  Google Scholar 

  • van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK (2004) Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42:635–652

    PubMed  Google Scholar 

  • van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci 18:7962–7971

    PubMed  Google Scholar 

  • van den Pol AN, Ghosh PK, Liu RJ, Li Y, Aghajanian GK, Gao XB (2002) Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP-expressing locus coeruleus. J Physiol 541:169–185

    PubMed  Google Scholar 

  • van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D (2004) Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci 7:493–494

    PubMed  Google Scholar 

  • van den Top M, Nolan MF, Lee K, Richardson PJ, Buijs RM, Davies CH, Spanswick D (2003) Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. J Physiol 549:809–821

    PubMed  Google Scholar 

  • Vanni-Mercier G, Sakai K, Jouvet M (1984) Neurons specifiques de l'eveil dans l'hypothalamus posterieur du chat. CR Acad Sci III 298:195–200

    CAS  Google Scholar 

  • Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, Marcus JN, Lee C, Elmquist JK, Kohlmeier KA et al. (2003) Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 38:715–730

    PubMed  CAS  Google Scholar 

  • Willie JT, Chemelli RM, Sinton CM, Yanagisawa M (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 24:429–458

    PubMed  CAS  Google Scholar 

  • Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea L (2004) Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 24:11439–11448

    PubMed  CAS  Google Scholar 

  • Wu M, Zaborszky L, Hajszan T, van den Pol AN, Alreja M (2004) Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons. J Neurosci 24:3527–3536

    PubMed  CAS  Google Scholar 

  • Wu M, Zhang Z, Leranth C, Xu C, van den Pol AN, Alreja M (2002) Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition. J Neurosci 22:7754–7765

    PubMed  CAS  Google Scholar 

  • Xi M, Morales FR, Chase MH (2001) Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res 901:259–264

    PubMed  CAS  Google Scholar 

  • Xie X, Crowder TL, Yamanaka A, Morairty SR, Lewinter RD, Sakurai T, Kilduff TS (2006) GABA(B) receptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus. J Physiol 574:399–414

    PubMed  CAS  Google Scholar 

  • Yamada H, Okumura T, Motomura W, Kobayashi Y, Kohgo Y (2000) Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem Biophys Res Commun 267:527–531

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Nozaki-Taguchi N, Chiba T (2002) Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. Br J Pharmacol 137:170–176

    PubMed  CAS  Google Scholar 

  • Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K et al. (2003a) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701–713

    PubMed  CAS  Google Scholar 

  • Yamanaka A, Kunii K, Nambu T, Tsujino N, Sakai A, Matsuzaki I, Miwa Y, Goto K, Sakurai T (2000) Orexin-induced food intake involves neuropeptide Y pathway. Brain Res 24:404–409

    Google Scholar 

  • Yamanaka A, Muraki Y, Ichiki K, Tsujino N, Kilduff TS, Goto K, Sakurai T (2006) Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J Neurophysiol 96:284–298

    PubMed  CAS  Google Scholar 

  • Yamanaka A, Muraki Y, Tsujino N, Goto K, Sakurai T (2003b) Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem Biophys Res Commun 303:120–129

    PubMed  CAS  Google Scholar 

  • Yamanaka A, Tsujino N, Funahashi H, Honda K, Guan JL, Wang QP, Tominaga M, Goto K, Shioda S, Sakurai T (2002) Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun 290:1237–1245

    PubMed  CAS  Google Scholar 

  • Yang ZJ, Meguid MM, Chai JK, Chen C, Oler A (1997) Bilateral hypothalamic dopamine infusion in male Zucker rat suppresses feeding due to reduced meal size. Pharmacol Biochem Behav 58:631–635

    PubMed  CAS  Google Scholar 

  • Yoshida K, McCormack S, Espana RA, Crocker A, Scammell TE (2006) Afferents to the orexin neurons of the rat brain. J Comp Neurol 494:845–861

    PubMed  Google Scholar 

  • Zhang W, Sakurai T, Fukuda Y, Kuwaki T (2006) Orexin neuron-mediated skeletal muscle vasodilation and shift of baroreflex during defense response in mice. Am J Physiol Regul Integr Comp Physiol 290:R1654–1663

    PubMed  CAS  Google Scholar 

  • Zheng H, Corkern MM, Crousillac SM, Patterson LM, Phifer CB, Berthoud HR (2002) Neurochemical phenotype of hypothalamic neurons showing Fos expression 23 h after intracranial AgRP. Am J Physiol Regul Integr Comp Physiol 282:R1773–1781

    PubMed  CAS  Google Scholar 

  • Zhu Y, Miwa Y, Yamanaka A, Yada T, Shibahara M, Abe Y, Sakurai T, Goto K (2003) Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J Pharmacol Sci 92:259–266

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Sakurai .

Editor information

Olivier Civelli Qun-Yong Zhou

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsuki, T., Sakurai, T. (2008). Orexins and Orexin Receptors: From Molecules to Integrative Physiology. In: Civelli, O., Zhou, QY. (eds) Orphan G Protein-Coupled Receptors and Novel Neuropeptides. Results and Problems in Cell Differentiation, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2007_047

Download citation

Publish with us

Policies and ethics