Skip to main content
Log in

Bioinspired segment robot with earthworm-like plane locomotion

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this paper, a miniaturized segment robot using solenoids is developed to mimic the plane locomotion of earthworms. The bioinspired robot is composed of five segmented bodies, and one segment has two solenoid actuators. This robot can move linearly and it can also turn due to the pair of solenoid actuators that facilitate the earthworm-like peristaltic locomotion. We have designed a miniaturized solenoid with a permanent magnet plunger in order to increase the total electromagnetic force. A theoretical analysis is performed to predict the linear and turning motions of each segment, and the optimal profiles of input signals are obtained for fast locomotion. Experiments are then conducted to determine the linear and turning motions of the segment robot. It takes about 0.5 s for the five segments to complete one cycle of the peristaltic locomotion. In experiments, the segment robot is shown to have the linear and angular velocities of 27.2 mm·s−1 (0.13 body-length per second) and 2 degrees per second, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trivedi D, Rahn C, Kier W, Walker D. Soft robotics: Biological inspiration, state of the art and future research. Applied Bionics and Biomechanics, 2008, 5, 99–117.

    Article  Google Scholar 

  2. Hirose S. Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, New York, USA, 1993.

    Google Scholar 

  3. Cho K J, Koh J S, Kim S, Chu W S, Hong Y, Ahn S H. Review of manufacturing processes for soft biomimetic robots. International Journal of Precision Engineering and Manufacturing, 2009, 10, 171–181.

    Article  Google Scholar 

  4. Hosokawa D, Ishikawa T, Morikawa H, Imai Y, Yamaguchi T. Development of a biologically inspired locomotion system for a capsule endoscope. International Journal of Medical Robotics and Computer Assisted Surgery, 2009, 5, 471–478.

    Article  Google Scholar 

  5. Trimmer B A. New challenges in biorobotics: Incorporating soft tissue into control systems. Applied Bionics and Biomechanics, 2008, 5, 119–126.

    Article  Google Scholar 

  6. Seok S, Onal C D, Cho K, Wood R J, Rus D, Kim S. Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Transactions on Mechatronics, 2013, 18, 1485–1498.

    Article  Google Scholar 

  7. Lin H T, Leisk G G, Trimmer B. GoQBot: A caterpillar- inspired soft-bodied rolling robot. Bioinspiration & Biomimetics, 2011, 6, 026007.

    Article  Google Scholar 

  8. Koh J, Cho K. Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators. IEEE/ASME Transactions on Mechatronics, 2013, 18, 419–429.

    Article  Google Scholar 

  9. Yuk H, Kim D, Lee H, Jo S, Shin J H. Shape memory alloy- based small crawling robots inspired by C. elegans. Bioinspiration & Biomimetics., 2011, 6, 046002.

    Article  Google Scholar 

  10. Menciassi A, Gorini S, Pernorio G, Dario P. A SMA actuated artificial earthworm. Proceedings of the IEEE International Conference on Robotics & Automation, New Orleans, LA, USA, 2004, 3282–3287.

    Google Scholar 

  11. Li G Y, Zhang H X, Zhang J W, Hildre H P. An approach for adaptive limbless locomotion using a CPG-based reflex mechanism. Journal of Bionic Engineering, 2014, 11, 389–399.

    Article  Google Scholar 

  12. Li G Y, Li W, Zhang J W, Zhang H X. Analysis and design of asymmetric oscillation for caterpillar-like locomotion. Journal of Bionic Engineering, 2015, 12, 190–203.

    Article  Google Scholar 

  13. Lobontiu N, Goldfarb M, Garcia E. A piezoelectric-driven inchworm locomotion device. Mechanism and Machine Theory, 2001, 36, 425–443.

    Article  MATH  Google Scholar 

  14. Guo S, Shi L, Xiao N, Asaka K. A biomimetic underwater microrobot with multifunctional locomotion. Robotics and Autonomous Systems, 2012, 60, 1472–1483.

    Article  Google Scholar 

  15. Firouzeh A, Ozmaeian M, Alasty A, Irajizad A. An IPMC-made deformable-ring-like robot. Smart Materials and Structures, 2012, 21, 065011.

    Article  Google Scholar 

  16. Arena P, Bonomo C, Fortuna L, Graziani S. Design and control of an IPMC wormlike robot. IEEE Transaction on Systems, Man, and Cybernetics, 2006, 36, 1044–1052.

    Article  Google Scholar 

  17. Lu H, Zhu J, Guo Y. An inchworm mobile robot using electromagnetic linear actuator. IEEE/ASME Transactions on Mechatronics, 2009, 19, 1116–1126.

    Google Scholar 

  18. Lee K M, Kim Y S, Paik J K, Shin B H. Clawed miniature inchworm robot driven by electromagnetic oscillatory actuator. Journal of Bionic Engineering, 2015, 12, 519–526.

    Article  Google Scholar 

  19. Shin B H, Choi S W, Bang Y B, Lee S Y. An earthworm-like actuator using segmented solenoids. Smart Materials and Structures, 2011, 20, 105020.

    Article  Google Scholar 

  20. Ito T, Ogushi T, Hayashi T. Impulse-driven capsule by coil-induced magnetic field implementation. Mechanism and Machine Theory, 2010, 45, 1642–1650.

    Article  MATH  Google Scholar 

  21. Min H, Lim H, Kim S. A new impact actuator using linear momentum exchange of inertia mass. Journal of Medical Engineering & Technology, 2006, 26, 265–269.

    Article  Google Scholar 

  22. Kim S H, Hasi S, Ishiyama K. Hybrid magnetic mechanism for active locomotion based on inchworm motion. Smart Materials and Structures, 2013, 22, 027001.

    Article  Google Scholar 

  23. Trueman E R. Locomotion in Soft-Bodied Animals. Edward Arnold, London, UK, 1975.

    Google Scholar 

  24. Quillin K M. Kinematic scaling of locomotion by hydrostatic animals: Ontogeny of peristaltic crawling by the earthworm lumbricus terrestris. Journal of Experimental Biology, 1999, 202, 661–674.

    Google Scholar 

  25. Song C W, Lee S Y. Design of a solenoid actuator with a magnetic plunger for miniaturized segment robots. Applied Sciences, 2015, 5, 595–607.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Yop Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, CW., Lee, DJ. & Lee, SY. Bioinspired segment robot with earthworm-like plane locomotion. J Bionic Eng 13, 292–302 (2016). https://doi.org/10.1016/S1672-6529(16)60302-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60302-5

Keyword

Navigation