Skip to main content
Log in

Biomimetics in production organization — A literature study and framework

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Biomimetics is an established field in research and industry. Current approaches focus on the use of biological principles in product development, while large potentials have also been identified for transferring organisational principles from nature to production organisation. This study gives a comprehensive overview of existing literature and illustrates that only fragmented research is being conducted at present. In order to enable systematic translation into methods that are available to practitioners, a framework is developed which allows the body of literature to be structured and potential fields not being researched at present to be identified. It also points out that some biological principles receive more attention in research approaches and practical implementation in production organisation than others. Furthermore, correlations between biological principles and principles in production are identified that there have already been successful translations of biomimetic approaches to production organisation. On the other hand, it suggests that there are numerous promising approaches only described in an initial paper that need further research before they can be implemented in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhushan B. Biomimetics: Lessons from nature-an overview. Philosophical Transactions of the Royal Society A, 2009, 367, 1445–1486.

    Article  Google Scholar 

  2. Nosonovskiĭ M, Bhushan B. Multiscale Dissipative Mechanisms and Hierarchical Surfaces Friction, Superhydrophobicity, and Biomimetics, Springer, Berlin, Germany, 2008.

    Book  MATH  Google Scholar 

  3. Bar-Cohen Y. Biomimetics: Nature Based Innovation, CRC press, Boca Raton, USA, 2011.

    Google Scholar 

  4. Wilkes M, Stange K. Gnadenlose Erfolgskette: 7 Strategie-Glieder Fuer Exzellente Marktkraft, stetiges Wachstum, nachhaltigen Gewinn, Linde, Wien, Austria, 2008. (in German)

    Google Scholar 

  5. Schatten M, Žugaj M. Biomimetics in modern organizations — laws or metaphors? Interdisciplinary Description of Complex Systems, 2011, 9, 39–55.

    Google Scholar 

  6. Vincent J F. Biomimetics — a review. Proceedings of the Institution of Mechanical Engineers, Part H. Journal of Engineering in Medicine, 2009, 223, 919–939.

    Article  Google Scholar 

  7. Harkness J M. A lifetime of connections: Otto Herbert Schmitt, 1913–1998. Physics in Perspective, 2002, 4, 456–490.

    Article  Google Scholar 

  8. von Gleich A, Pade C, Petschow U, Pissarskoi E. Potentials and Trends in Biomimetics, Springer, Berlin, Germany, 2010.

    Book  Google Scholar 

  9. Stokholm M D J. Bionics. Architecture, Aalborg, Denmark, 2005.

    Google Scholar 

  10. Bar-Cohen Y. Biomimetics: Biologically Inspired Technologies, CRC press, Boca Raton, USA, 2006.

    Google Scholar 

  11. Vincent J F, Bogatyreva O A, Bogatyrev N R, Bowyer A, Pahl A K. Biomimetics: Its practice and theory. Journal of the Royal Society Interface, 2006, 3, 471–482.

    Article  Google Scholar 

  12. Ferdinand J P, Petschow U, von Gleich A, Seipold P. Literaturstudie Bionik: Analyse aktueller Entwicklungen und Tendenzen im Bereich der Wirtschaftsbionik. Institut für Oekologische Wirtschaftsforschung, Berlin, Germany, 2012. (in German)

    Google Scholar 

  13. Nachtigall W. Bionik: Grundlagen und Beispiele Fuer Ingenieure und Naturwissenschaftler, Springer, Berlin, Germany, 2002. (in German)

    Book  Google Scholar 

  14. Neumann D. Bionik — technologieanalyse. In: Neumann D, ed., VDI — Technologiezentrum Physikalische Technologien, Düsseldorf, Germany, 1993. (in German)

    Google Scholar 

  15. Rick K. Economy and Bionics, [2012-05-01], http://www.up.com.br

    Google Scholar 

  16. Stachelberger H, Gruber P, Gebeshuber I C. Biomimetics: Its technological and societal potential. In: Gruber P, ed., Biomimetics — Materials, Structures and Processes: Examples, Ideas, and Case Studies, Springer, Heidelberg, Germany, 2011.

    Google Scholar 

  17. Walter L, Isenmann R, Moehrle M G. Bionics in patents — semantic-based analysis for the exploitation of bionic principles in patents. Procedia Engineering, 2011, 9, 620–632

    Article  Google Scholar 

  18. Eversheim W. Innovation Management for Technical Products Systematic and Integrated Product Development and Production Planning, Springer, Berlin, Germany, 2008.

    Google Scholar 

  19. Panneerselvam R. Production and Operations Management, PHI Learning, New Delhi, India, 2012.

    Google Scholar 

  20. Dekkers R. Collaborations in Industrial Networks: The Co-Evolutionary Perspective Dispersed Manufacturing Networks: Challenges for Research and Practice, Springer, Dordrecht, Netherlands, 2009.

    Google Scholar 

  21. Kletti J. Manufacturing Execution Systems, Springer, Berlin, Germany, 2007.

    Book  Google Scholar 

  22. Misra K B. Handbook of Performability Engineering, Springer, London, UK, 2008.

    Book  Google Scholar 

  23. Küppers U. Systemisches bionik-management. Wissenschaftsmanagement, 2010, 1, 37–42. (in German)

    Google Scholar 

  24. Malik F. Systemisches Management, Evolution, Selbstorganisation, Haupt, Bern, Switzerland, 1999. (in German)

    Google Scholar 

  25. Camazine S, Deneubourg J L, Franks N R, Sneyd J, Theraulaz G, Bonabeau E. Self-organization in Biological Systems, Princeton University Press, Princeton, USA, 2003.

    MATH  Google Scholar 

  26. Wiener N, Schade J P. Nerve, Brain and Memory Models, Elsevier, Amsterdam, Netherlands, 1963.

    Google Scholar 

  27. Beer S. Cybernetics and Management, Wiley, New York, USA, 1959.

    Google Scholar 

  28. Schwaninger M. The Evolution of Organizational Cybernetics. Scientiae Mathematicae Japonicae, 2006, 64, 405–420.

    MathSciNet  MATH  Google Scholar 

  29. Kampker A, Schuh G. Strategie und Management Produzierender Unternehmen, Springer, Berlin, Germany, 2011. (in German)

    Google Scholar 

  30. Herrmann C, Bergmann L, Halubek P, Thiede S. Lean production system design from the perspective of the viable system. In: Mitsuishi M, Ueda K, Kimura F, eds., Model Manufacturing Systems and Technologies for the New Frontier, Springer, London, UK, 2008, 309–314.

    Chapter  Google Scholar 

  31. Herrmann C, Thiede S, Stehr J, Bergmann L. An environmental perspective on lean production. In: Mitsuishi M, Ueda K, Kimura F, eds., Model Manufacturing Systems and Technologies for the New Frontier, Springer, London, UK, 2008, 83–88.

    Chapter  Google Scholar 

  32. Okino N. Bionic manufacturing systems: Modelon based approach. Proceedings of the CAM-I 18th Annual International Conference. Computer Aided Manufacturing- International Inc, New Orleans, USA, 1989, 485–492.

    Google Scholar 

  33. Okino N. A prototyping of bionic manufacturing system. Proceedings of the International Conference on Object-oriented Manufacturing Systems, Calgary, Canada, 1992, 297–302.

    Google Scholar 

  34. Okino N. Bionic Manufacturing system. In: Peklenik J, ed., Flexible Manufacturing Systems. Past, Present, Future, SVN, Ljubljana, Slovenia, 1993, 73–95.

    Google Scholar 

  35. Ueda K, Vaario J, Ohkura K. Modelling of biological manufacturing systems for dynamic reconfiguration. CIRP Annals - Manufacturing Technology, 1997, 46, 343–346.

    Article  Google Scholar 

  36. Ueda K, Hatono I, Fuji N, Vaario J. Reinforcement learning approaches to biological manufacturing systems. CIRP Annals - Manufacturing Technology, 2000, 49, 343–346.

    Article  Google Scholar 

  37. Ueda K, Hatono I, Fuji N, Vaario J. Line-less production system using self-organization: A case study for BMS. CIRP Annals - Manufacturing Technology, 2001, 50, 319–322.

    Article  Google Scholar 

  38. Ueda K, Fuji N, Hatono I, Kobayashi M. Facility layout planning using self-organization method. CIRP Annals — Manufacturing Technology, 2002, 51, 399–402.

    Article  Google Scholar 

  39. Mella P. The holonic perspective in management and manufacturing. International Management Review, 2009, 5, 19–30.

    Google Scholar 

  40. Gu W, Tang D, Zheng K, Wang L A neuroendocrine- inspired bionic manufacturing system. Journal of Systems Science and Systems Engineering, 2011, 20, 275–293.

    Article  Google Scholar 

  41. Mill F, Sherlock A. Biological analogies in manufacturing. Computers in Industry, 2000, 43, 153–160.

    Article  Google Scholar 

  42. Demeester L, Eichler K, Loch C. Organic production systems: What the biological cell can teach us about manufacturing. Manufacturing & Service Operations Management, 2004, 6, 115–132.

    Article  Google Scholar 

  43. Holland J H. Adaption in Natural and Artificial Systems, University of Michigan Press, Cambridge, UK, 1975.

    MATH  Google Scholar 

  44. Lawler E L, Lenstra J K, Kan A R, Shmoys D B. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley, Chichester, UK, 1985.

    MATH  Google Scholar 

  45. Błażewicz J, Domschke W, Pesch E. The job shop scheduling problem: Conventional and new solution techniques. European Journal of Operational Research, 1996, 93, 1–33.

    Article  MATH  Google Scholar 

  46. Yang J, Sun L, Lee H, Qian Y, Liang Y. Clonal selection based memetic algorithm for job shop scheduling problems. Journal of Bionic Engineering, 2008, 5, 111–119.

    Article  Google Scholar 

  47. Davis L. Job shop scheduling with genetic algorithms. Proceedings of the 1st International Conference on Genetic Algorithms and their Applications, Lawrence Erlbaum Associates, Hillsdale, USA, 1985, 136–140.

    Google Scholar 

  48. Yamada T, Nakano R. Genetic algorithms for job-shop scheduling problems. Proceedings of Modern Heuristic for Decision Support, London, UK, 1997, 67–81.

    Google Scholar 

  49. Goncalves J F. A hybrid genetic algorithm for the job shop scheduling problem. European Journal of Operational Research, 2005, 167, 77–95.

    Article  MathSciNet  MATH  Google Scholar 

  50. Rechenberg I. Evolutionsstrategie: Optimierung Technischer Systeme Nach Prinzipien Der biologischen Evolution, Frommann-Holzboog, Stuttgart, Germany, 1973. (in German)

    Google Scholar 

  51. Schwefel H P. Numerical Optimization for Computer Models, Wiley, Chichester, UK, 1981.

    MATH  Google Scholar 

  52. Koza J R. Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, UK, 1992.

    MATH  Google Scholar 

  53. Fogel L J, Owens A J, Walsh M J. Artificial Intelligence through Simulated Evolution, Wiley, New York, USA, 1966.

    MATH  Google Scholar 

  54. Tay J C, Ho N B. Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Computers & Industrial Engineering, 2008, 54, 453–473.

    Article  Google Scholar 

  55. Steinbuch R. Successful application of evolutionary algorithms in engineering design. Journal of Bionic Engineering, 2010, 7, 199–211

    Article  Google Scholar 

  56. Tero A, Kobayashi R, Nakagaki T. A mathematical model for adaptive transport network in path finding by true slime mold. Journal of Theoretical Biology, 2007, 244, 553–564.

    Article  MathSciNet  Google Scholar 

  57. Monismith D, Mayfield B. Slime mold as a model for numerical optimization. 2008 IEEE Swarm Intelligence Symposium, St. Louis, USA, 2008, 1–8.

    Google Scholar 

  58. Tero A, Takagi S, Saisuga T, Ito K, Bebber D P, Fricker M D, Yumiki K, Kobayashi R, Nakagaki T. Rules for biologically inspired adaptive network design. Science, 2010, 327, 439–442.

    Article  MathSciNet  MATH  Google Scholar 

  59. Nawa E, Fururashi T. Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Transactions on Fuzzy Systems, 1999, 7, 608–616.

    Article  Google Scholar 

  60. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks IV, Perth, Australia, 1995, 1942–1948.

    Chapter  Google Scholar 

  61. Poli R. An Analysis of Publications on Particle Swarm Optimisation Applications, Technical Report, University of Essex, UK, 2007.

    Google Scholar 

  62. Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies. Proceedings of ECAL91 — European Conference on Artificial Life, Elsevier, Amsterdam, Netherlands, 1991, 134–142.

    Google Scholar 

  63. Grassé P P. La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétation du comportement des Termites constructeurs. Insectes Sociaux, 1959, 6, 41–83. (in French)

    Article  Google Scholar 

  64. Kennedy J, Eberhart R C, Shi Y. Swarm Intelligence, Morgan Kaufmann, San Francisco, USA, 2001.

    Google Scholar 

  65. Engelbrecht A P. Fundamentals of Computational Swarm Intelligence, Wiley, Hoboken, USA, 2005.

    Google Scholar 

  66. Marsh L, Onof C. Stigmergic epistemology, stigmergic cognition. Cognitive Systems Research, 2008, 9, 136–149.

    Article  Google Scholar 

  67. Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Computational Intelligence Magazine, 2006, 1, 28–39.

    Article  Google Scholar 

  68. Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 1996, 26, 29–41.

    Article  Google Scholar 

  69. Colorni A, Dorigo M, Maniezzo V, Trubian M. Ant system for job-shop scheduling. Belgian Journal of Operations Research, Statistics and Computer Science, 1994, 34, 39–53.

    MATH  Google Scholar 

  70. Vogel A, Fischer M, Jähn H, Teich T. Real-world shop floor scheduling by ant colony optimization. Proceedings of the 3rd International Workshop on Ant algorithms, Brussels, Belgium, 2002, 268–273.

    Chapter  Google Scholar 

  71. Karaboga D, Akay B. A survey: Algorithms simulating bee swarm intelligence. Artificial Intelligence Review, 2009, 31, 61–85.

    Article  Google Scholar 

  72. Lučić P, Teodorović D. Bee system: Modeling combinatorial optimization transportation engineering problems by swarm intelligence. Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel, Portugal, 2001, 441–445.

    Google Scholar 

  73. Teodorovic D, Dell M. Bee colony optimization — a cooperative learning approach to complex transportation problems. Advanced OR and AI methods in transportation — Proceedings of 16th Mini-EURO Conference and 10th Meeting of EWGT, Poznan, Poland, 2005, 51–60.

    Google Scholar 

  74. Chong C, Hean Low M, Sivakumar A, Gay K. A bee colony optimization algorithm to job shop scheduling. Proceedings of the 2006 Winter Simulation Conference, IEEE, Monterey, USA, 2006, 1954–1961.

    Chapter  Google Scholar 

  75. Abbass H A. MBO: Marriage in honey bees optimization — a haplometrosis polygynous swarming approach. Proceedings of the 2001 IEEE Congress on Evolutionary Computation, IEEE, Seoul, Korea, 2001, 1, 207–214.

    Article  Google Scholar 

  76. Chang H S. Converging marriage in honey-bees optimization and application to stochastic dynamic programming. Journal of Global Optimization, 2006, 35, 423–441.

    Article  MathSciNet  MATH  Google Scholar 

  77. Yang X S. A new metaheuristic bat-inspired algorithm. Studies in Computational Intelligence, 2010, 284, 65–74.

    MATH  Google Scholar 

  78. Ruiz-Vanoye J A. Meta-heuristics algorithms based on the grouping of animals by social behavior for the traveling salesman problem. International Journal of Combinatorial Optimization Problems and Informatics, 2012, 3, 104–123.

    Google Scholar 

  79. Wilson J O. A Systematic Approach to Bio-inspired Conceptual Design, PhD thesis, Georgia Institute of Technology, Atlanta, USA, 2008.

    Google Scholar 

  80. Shu L. A natural-language approach to biomimetic design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2010, 24, 507–519.

    Article  Google Scholar 

  81. Kesel A B. Sind Prozesse aus der Natur auf Wirtschaftsprozesse übertragbar? Darwin meets Busines, Wiesbaden, Germany, 2010, 81–86. (in German)

    Google Scholar 

  82. Speck T, Speck O. Process sequences in biomimetic research. In: Brebbia C A, ed., Design and Nature IV, WIT Press, Southampton, UK, 2008, 3–11.

    Chapter  Google Scholar 

  83. Campbell N A, Reece J B. Biology, Pearson, Boston, USA, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Teschemacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisen, K., Teschemacher, U., Niehues, M. et al. Biomimetics in production organization — A literature study and framework. J Bionic Eng 13, 200–212 (2016). https://doi.org/10.1016/S1672-6529(16)60294-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60294-9

Keyword

Navigation