Skip to main content
Log in

Investigation on the lateral line systems of two cavefish: Sinocyclocheilus Macrophthalmus and S. Microphthalmus (Cypriniformes: Cyprinidae)

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Cavefish, with sensitive lateral lines, can swim freely and locate preys in invisible and complex cave environments, though their eyes are greatly degenerated. Investigations on the morphology and distribution characteristics of their lateral line systems would benefit our understanding of the high-sensitivity mechanism of the fish. In this study, the arrangement and morphology of the lateral lines are described for two species of Sinocyclocheilus: S. macrophthalmus and S. microphthalmus, which live in the karst caves in Guangxi, China. The behavior experiments indicate that the lateral line system of the S. macrophthalmus is more sensitive at a low vibration frequency range from 20 Hz to 70 Hz. The cephalic and trunk lateral line systems both contribute to the efficient object-locating capability. For both of the two species of cavefish, the diameter of the lateral canal nearby the neuromasts is narrower than that nearby the canal pores. This variation can increase the normal pressure to the surface of the cupula, and increase the sensitivity of the canal lateral line system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleckmann H, Zelick R. Lateral line system of fish. Integrative Zoology, 2009, 4, 13–25.

    Article  Google Scholar 

  2. Fratzl P, Barth F G. BIOMATERIAL SYSTEMS FOR MECHANOSENSING AND ACTUATION. Nature, 2009, 426, 442–448.

    Article  Google Scholar 

  3. Douglass J K, Wilkens L, Pantazelou E, Moss F. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 1993, 365, 337–340.

    Article  Google Scholar 

  4. Bleckmann H, Schimitz H, von der Emde G. Nature as a model for technical sensors. Journal of Comparative Physiology A, 2004, 190, 971–981.

    Article  Google Scholar 

  5. Reppert S M, Zhu H, White R. Polarized light helps monarch butterflies navigate. Current Biology, 2004, 14, 155–158.

    Article  Google Scholar 

  6. Karman S B, Diah S Z M, Gebeshuber IC. Bio-inspired polarized skylight-based navigation sensors: A review. Sensors, 2012, 12, 14232–14261.

    Article  Google Scholar 

  7. Kauer J S. On the scents of smell in the salamander. Nature, 2002, 417, 336–342.

    Article  Google Scholar 

  8. Ghysen A, Dambly-Chaudiere C. The lateral line microcosmos. Genes & Development, 2007, 21, 2118–2130.

    Article  Google Scholar 

  9. Tao J L, Yu X. Hair flow sensors: From bio-inspiration to bio-mimicking-a review. Smart Materials and Structures, 2012, 21, 113001.

  10. Fan Z F, Chen J, Zou J, Bullen D, Liu C, Delcomyn F. Design and fabrication of artificial lateral line flow sensors. Journal of Micromechanics and Microengineering, 2002, 12, 655–661

    Article  Google Scholar 

  11. Peleshanko S, Julian M D, Ornatska M, McConney, M E, LeMieux M C, Chen N, Tucker C, Yang Y, Liu C, Humphrey J A C, Tsukruk V V. Hydrogel-encapsulated microfabricated haircells mimicking fish cupula neuromast. Advanced Materials, 2007, 19, 2903–2909.

    Article  Google Scholar 

  12. Kottapalli A G P, Asadnia M, Miao J, Triantafyllou M. Soft polymer membrane micro-sensor arrays inspired by the mechanosensory lateral line on the blind cavefish. Journal of Intelligent Material Systems and Structures, 2015, 26, 38–46.

    Article  Google Scholar 

  13. Yang Y C, Klein A, Bleckmann H, Liu C. Artificial lateral- line canal for hydrodynamic detection. Applied Physics Letters, 2011, 99, 023701.

  14. Asadnia M, Kottapalli A G P, Miao J M, Warkiani M E, Triantafyllou M S. Artificial fish skin of self-powered micro- electromechanical systems hair cells for sensing hydrodynamic flow phenomena. Journal of the Royal Society Interface, 2015, 12, 1–14.

    Article  Google Scholar 

  15. Herzog H, Klein A, Bleckmannm H, Holik P, Schmitz S, SIEBKE G, Tatzner S, Lacher M, Steltenkamp S. µ-biomimetic flow-sensors-introducing light-guiding PDMS structures into MEMS. Bioinspiration and Biomimetics, 2015, 10, 036001.

  16. Zhou H, Hu T J, Low K H, Shen L C, Ma Z W, Wang G M, Xu H J. Bio-inspired Flow Sensing and Prediction for Fish-like Undulating Locomotion: A CFD-aided Approach. Journal of Bionic Engineering, 2015, 12, 406–417.

    Article  Google Scholar 

  17. Coombs S, Janssen J. Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. Journal of Comparative Physiology A, 1990, 167, 557–567.

    Article  Google Scholar 

  18. van Netten S M, Khanna S M. Stiffness changes of the cupula associated with the mechanics of hair cells in the fish lateral line. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1549–1553.

    Article  Google Scholar 

  19. Weeg M S, Bass A H. Frequency response properties of lateral Line superficial neuromasts in a vocal fish, with evidence for acoustic sensitivity. Journal of Neurophysiology, 2002, 88, 1252–1261.

    Article  Google Scholar 

  20. Schwarz J S, Reichenbach T, Hudspeth A J. A hydrodynamic sensory antenna used by killifish for nocturnal hunting. The Journal of Experimental Biology, 2011, 214, 1857–1866.

    Article  Google Scholar 

  21. Van Trump W J, McHenry M J. The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). The Journal of Experimental Biology, 2008, 211, 2105–2115.

    Article  Google Scholar 

  22. Stewart W, Cardenas G S, McHenry M J. Zebrafish larvae evade predators by sensing water flow. The Journal of Experimental Biology, 2013, 216, 388–398.

    Article  Google Scholar 

  23. Yoshizawa M, Jeffery W R, Van Netten S M, McHenry M J. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus). The Journal of Experimental Biology, 2014, 217, 886–895.

    Article  Google Scholar 

  24. Montgornery J C, Coombs S, Baker C F. The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Environmental Biology of Fishes, 2001, 62, 87–96.

    Article  Google Scholar 

  25. Van Netten S M. Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. Biological Cybernetics, 2006, 94, 67–85.

    Article  MATH  Google Scholar 

  26. Sane S P, McHenry M J. The influence of viscous hydrodynamics on the fish lateral-line system. Integrative and Comparative Biology, 2009, 49, 691–701.

    Article  Google Scholar 

  27. Van Netten S M. Hydrodynamics of the excitation of the cupula in the fish canal lateral line. The Journal of the Acoustical Society of America, 1991, 89, 310–319.

    Article  Google Scholar 

  28. Windsor S P, Norris S E, Cameron S M. The flow fields involved in hydrodynamic imaging by blind Mexican cavefish (Astyanax fasciatus). Part I: Open water and heading towards a wall. The Journal of Experimental Biology, 2010, 213, 3819–3831.

    Article  Google Scholar 

  29. Bockmann F A, Castro R M C. The blind catfish from the caves of Chapada Diamantina, Bahia, Brazil (Siluriformes: Heptapteridae): Description, anatomy, phylogenetic relationships, natural history, and biogeography. Neotropical Ichthyology, 2010, 8, 673–706.

    Article  Google Scholar 

  30. Zhao Y, Gozlan R E, Zhang C. Out of sight out of mind: Current knowledge of Chinese cavefish. Journal of Fish Biology, 2011, 79, 1545–1562.

    Article  Google Scholar 

  31. Zhao Y, Zhang C. Endemic Fish of Sinocyclocheilus (Cypriniformes: Cyprinidae) in China - Species diversity, cave adaptation, systematics and zoogeography, Science Press, Beijing, 2009. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Fu, J., Zhang, D. et al. Investigation on the lateral line systems of two cavefish: Sinocyclocheilus Macrophthalmus and S. Microphthalmus (Cypriniformes: Cyprinidae). J Bionic Eng 13, 108–114 (2016). https://doi.org/10.1016/S1672-6529(14)60164-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60164-5

Keywords

Navigation