Skip to main content
Log in

Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

As the frequent oil spill accidents happens and large quantities of oily wastewater from all kinds of industries are being discharged, the environment has been seriously polluted and our living areas have been horribly threatened. To deal with these issues, attentions have been aroused on the treatments of the oily wastewater. Recently, numerous superwettable materials have been fabricated. In this review, we summarize the new development of the materials for the separation of oil/water mixtures, mainly including the immiscible and emulsified mixtures. For the separation of immiscible ones, special materials with fixed wettability are firstly detailed, where three types of materials can be classified based on their wettability, i.e. superhydrophobic and superoleophilic materials, superhydrophilic and underwater superoleophobic materials, and superhydrophilic and su-peroleophobic materials. Then, the smart materials with switchable wettabilities responsive to external stimulus, for instance, light, solvent, pH, temperature, and electrical potential, are presented. Meanwhile, the single, dual, and multiple stimulus-responsive materials are also described. As for the separation of emulsified oil/water mixtures, the materials for the separation of water-in-oil (W/O), oil-in-water (O/W), and both water-in-oil (W/O) and oil-in-water (O/W) emulsions are sequentially introduced. Finally, some challenges are discussed and the outlook in this filed is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinals B J, Mayers M A. Science and technology for water purification in the coming decades. Nature, 2008, 452, 301–310.

    Article  Google Scholar 

  2. Peterson C H, Rice S D, Short J W, Esler D, Bodkin J L, Ballachey B E, Irons D B. Long-term ecosystem response to the exxon valdez oil spill. Science, 2003, 302, 2082–2086.

    Article  Google Scholar 

  3. Feng X J, Jiang L. Design and creation of superwet-ting/antiwetting surfaces. Advanced Materials, 2006, 18, 3063–3078.

    Article  Google Scholar 

  4. Gui X C, Zeng Z P, Lin Z Q, Gan Q M, Xiang R, Zhu Y, Cao A Y, Tang Z K. Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation. ACS Applied Materials & Interfaces, 2013, 5, 5845–5850.

    Article  Google Scholar 

  5. Zhang L B, Zhong Y J, Cha D K, Wang P. A self-cleaning underwater superoleophobic mesh for oil-water separation. Scientific Reports, 2013, 3, 2326.

    Article  Google Scholar 

  6. Wang B, Li J, Wang G Y, Liang W X, Zhang Y B, Shi L, Guo Z G, Liu W M. Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation. ACS Applied Materials & Interfaces, 2013, 5, 1827–1839.

    Article  Google Scholar 

  7. Dong H Y, Qiang Z M, Wang W D, Jin H. Evaluation of rural wastewater treatment processes in a county of eastern China. Journal of Environmental Monitoring, 2012, 14, 1906–1913.

    Article  Google Scholar 

  8. Cheng M J, Gao Y F, Guo X P, Shi Z Y, Chen J F, Shi F. A functional integrated device for effective and facile oil spill cleanup. Langmuir, 2011, 27, 7371–7375.

    Article  Google Scholar 

  9. Li W W, Yu H Q, He Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy & Environmental Science, 2014, 7, 911–924.

    Article  Google Scholar 

  10. Ouyang T P, Zhu Z Y, Kuang Y Q. River water quality and pollution sources in the Pearl River Delta, China. Journal of Environmental Monitoring, 2005, 7, 664–669.

    Article  Google Scholar 

  11. Nakamura H. Recent organic pollution and its biosensing methods. Analytical Methods, 2010, 2, 430–444.

    Article  Google Scholar 

  12. Shen Y F. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Advances, 2014, 4, 49672–29722.

    Article  Google Scholar 

  13. Heidler J, Halden R U. Fate of organohalogens in US wastewater treatment plants and estimated chemical releases to soils nationwide from biosolids recycling. Journal of Environmental Monitoring, 2009, 11, 2207–2215.

    Article  Google Scholar 

  14. Dodd M C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. Journal of Environmental Monitoring, 2012, 14, 1754–1771.

    Article  Google Scholar 

  15. Karthikeyan S, Anandan C, Subramanian J, Sekaran G. Characterization of iron impregnated polyacrylamide catalyst and its application to treatment of municipal wastewater. RSC Advances, 2013, 3, 15044–15057.

    Article  Google Scholar 

  16. Schubotz F, Lipp J S, Elvert M, Hinrichs K U. Stable carbon isotopic compositions of intact polar lipids reveal complex carbon flow patterns among hydrocarbon fegrading micro-bial communities at the chapopote ssphalt volcano. Geo-chimica et Cosmochimica Acta, 2011, 75, 4399–4415.

    Article  Google Scholar 

  17. Skogdalen J E, Vinnem J E. Quantitive risk analysis of oil and gas drilling, using deepwater horizon as case study. Reliability Engineering & System Safety, 2012, 100, 58–66.

    Article  Google Scholar 

  18. Zhang Y, Zhao H D, Zhai W D, Zang K P, Wang J Y. Enhanced methane emissions from oil and gas exploration areas to atmosphere-the central Bohai sea. Marine Pollution Bulletin, 2014, 81, 157–165.

    Article  Google Scholar 

  19. Sündermann J, Feng S Z. Analysis and modelling of the Bohai sea ecosystem―a joint German-Chinese study, Journal of Marine Systems, 2004, 44, 127–140.

    Article  Google Scholar 

  20. Zeng J W, Wang B, Zhang Y B, Zhu H, Guo Z G. Strong amphiphobic porous films with oily self-cleaning property beyond nature. Chemistry Letters, 2014, 43, 1566–1568.

    Article  Google Scholar 

  21. Zhu H, Guo Z G. A superhydrophobic copper mesh with microrod structure for oil-water separation inspired from ramee leaf. Chemistry Letters, 2014, 43, 1645–1647.

    Article  Google Scholar 

  22. Zhu Y Z, Wang D, Jiang L, Jin J. Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Materials, 2014, 6, e101.

    Article  Google Scholar 

  23. Pham V H, Dickerson J H. Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Applied Materials & Interfaces, 2014, 6, 14181–14188.

    Article  Google Scholar 

  24. Li L, Liu Z Y, Zhang Q Q, Meng C H, Zhang T R, Zhai J. Underwater superoleophobic porous membrane based on hierarchical TiO2 nanotube: Multifunctional intergration of oil-water separation, Flow-through photocatalysis and self-cleaning. Journal of Materials Chemistry A, 2015, 3, 1279–1286.

    Article  Google Scholar 

  25. Zhang J P, Seeger S. Polyester materials with superwetting silicone nanofilaments for oil/water aeparation and aelective oil absorption. Advanced Functional Materials, 2011, 21, 4699–4704.

    Article  Google Scholar 

  26. Liu N, Chen Y N, Lu F, Cao Y Z, Xue Z X, Li K, Feng L, Wen Y. Straightforward oxidation of a copper substrate produces an underwater superoleophobic mesh for oil/water separation. ChemPhysChem, 2013, 14, 3489–3494.

    Article  Google Scholar 

  27. Al-Shamrani A A, James A. Xiao H. Destabilisation of oil-water emulsions and separation by dissovled air flotation. Water Resources, 2002, 36, 1503–1512.

    Google Scholar 

  28. Rubio J, Souza M L, Smith R W. Overview of flotation as a wastewater treatment technique. Minerals Engineering, 2002, 15, 139–155.

    Article  Google Scholar 

  29. Cheryan M, Rajagopalan N. Membrane processing of oily streams, Wastewater treatment and waste reduction. Journal of Membrane Science, 1998, 151, 13–28.

    Article  Google Scholar 

  30. Barthlott W, Neinhuis C. Purity of the sacred lotus, Or escape from contamination in biological surfaces. Planta, 1997, 202, 1–8.

    Article  Google Scholar 

  31. Bixler G D, Bhusan B. Fluid drag reduction and efficient self-cleaning with rice leaf with butterfly wing bioinspired surfaces. Nanoscale, 2013, 5, 7685–7710.

    Article  Google Scholar 

  32. Ragesh P, Ganesh V A, Nair S V, Nair A S. A review on ‘self-cleaning and multifunctional materials’. Journal of Materials Chemistry A, 2012, 2, 14773–14797.

    Article  Google Scholar 

  33. Wang J M, Yang Q L, Wang M C, Wang C, Jiang L. Rose petals with a novel and steady air bubble pinning effect in aqueous media. Soft Matter, 2012, 8, 2261–2266.

    Article  Google Scholar 

  34. Waghmare P R, Gunda N S K, Mitra S K. Under-water superholeophobicity of fish scales. Scientific reports, 2014, 4, 7454.

    Article  Google Scholar 

  35. Nagappan S, Ha C S. Emerging trends in superhydrophobic surfaces based magnetic materials: Fabrications and their potential applications. Journal of Materials Chemistry A, 2015, 3, 3224–3251.

    Article  Google Scholar 

  36. Barbetta A, Cameron N R. Morphology and surface area of emulsion-derived (polyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: Span 80 as surfactant. Macromolecules, 2004, 37, 3188–3201.

    Article  Google Scholar 

  37. Toyoda M, Inagaki M. Heavy oil sorption using exfoliated graphite: New application of exfoliated graphite to protect heavy oil pollution. Carbon, 2000, 38, 199–210.

    Article  Google Scholar 

  38. Niedergall K, Bach M, Schiestel T, Tovar G E M. Nanos-tructured composite adsorber menbranes for the reduction of trace substance in water: The example of bisphenol A. Industrial and Engineering Chemistry Research, 2013, 52, 14011–14018.

    Article  Google Scholar 

  39. Bannock J H, Phillips T W, Nightingale A M, DeMello J C. Microscale separation of immiscible liquids using a porous capillary. Analytical Methods, 2013, 5, 4991–4998.

    Article  Google Scholar 

  40. Ibrahim S, Wang S B, Ang H M. Removal of emulsified oil from oily wastewater using agricultural waste barley straw. Biochemical Engineering Journal, 2010, 49, 78–83.

    Article  Google Scholar 

  41. Zhu, Y Z, Xie W, Li J Y, Xing T L, Jin J. pH-induced non-fouling membrane for effective separation of oil-in-water emulsion. Journal of Membrane Science, 2015, 477, 131–138.

    Article  Google Scholar 

  42. Yang L, Thongsukmak A, Sirkar K K, Gross K B, Mor-dukhovich G. Bio-inspired onboard membrane separation of water from engine oil. Journal of Membrane Science, 2011, 378, 138–148.

    Article  Google Scholar 

  43. Song L F. Flux decline in crossflow microfiltration and ultrafiltration mechanisms and modeling of membrane fouling. Journal of Membrane Science, 1998, 139, 183–200.

    Article  Google Scholar 

  44. Belkacem M, Matamoros H, Cabassud C, Aurelle Y, Cot-teret J. New results in metal working wastewater treatment using membrane technology. Journal of Membrane Science, 1995, 106, 195–205.

    Article  Google Scholar 

  45. Geise M G, Lee H S, Miller D J, Freeman B D, McGrath J E, Paul D R. Water purification by membranes: The role of polymer science. Journal of Polymer Science Part B: Polymer Physics, 2010, 48, 1685–1718.

    Article  Google Scholar 

  46. Kong J, Li K. Oil removal from oil-in-water emulsions using PVDF membranes. Separation and Purification Technology, 1999, 16, 83–93.

    Article  Google Scholar 

  47. Wu J, Xia J, Zhang Y N, Lei W, Wang B P. A simple method to fabricate the different extents of superhydrophobic surfaces. Physica E: Low-dimensional Systems and Nanos-tructures, 2010, 42, 1325–1328.

    Article  Google Scholar 

  48. Niu S C, Li B, Mu Z Z, Yang M, Zhang J Q, Han Z W, Ren L Q. Excellent dtructure-based multifunction of morpho butterfly wings: A review. Journal of Bionic Engineering, 2015, 12, 170–189.

    Article  Google Scholar 

  49. Xin Y, Guo, Z G. Robust superhydrophobic zinc oxide film. Chemistry Letters, 2014, 43, 305–306.

    Article  Google Scholar 

  50. Li J D, Xu J S, Wang B, Guo Z G. Transparent and super-hydrophobic Co3O4 microfiber films. Chemistry Letters, 2014, 43, 100–101.

    Article  Google Scholar 

  51. Zhang Y B, Guo Z G. pH-responsive wettable fabrics with hierarchical structures. Chemistry Letters, 2014, 43, 553–555.

    Article  Google Scholar 

  52. Yang F C, Guo Z G. Characterization of micro-morphology and wettability of lotus leaf, Waterlily leaf and biomimetic ZnO surface. Journal of Bionic Engineering, 2015, 12, 88–97.

    Article  Google Scholar 

  53. Wang G Y, Guo Z G, Liu W M. Interfacial effects of super-hydrophobic plant surface: A Review. Journal of Bionic Engineering, 2014, 11, 325–345.

    Article  Google Scholar 

  54. Shi Z, Chen X J, Wang X W, Zhang T, Jin J. Fabrication of superstrong ultrathin free-standing single-walled carbon nanotube films via a wet process. Advanced Functional Materials, 2011, 21, 4358–4363.

    Article  Google Scholar 

  55. Hiraoka T, Najafabadi A L, Yamada T, Futaba D N, Yasuda S, Tanaike O, Hatori H, Yumura M, Lijima S, Hata K. Compact and light supercapacitor electrodes from a surface-only solid by opened carbon nanotubes with 2200 m2g-1 surface area. Advanced Functional Materials, 2010, 20, 422–428.

    Article  Google Scholar 

  56. Jong J D, Cao Y Z, Chen Y N, Liu N, Lin X, Feng L, Wei Y. Mussel-inspired chemistry and stöber method for highly stabilized water-in-oil emulsions separation. Journal of Materials Chemistry A, 2014, 2, 20439–20443.

    Article  Google Scholar 

  57. Lv J L, Jiang Y G, Zhang D Y. Structural and mechanical characterization of Atrina Pectinata and freshwater mussel shells. Journal of Bionic Engineering, 2015, 12, 276–284.

    Article  Google Scholar 

  58. Zhang P F, Chen H W, Zhang D Y. Investigation of the anisotropic morphology-induced effects of the slippery zone in pitchers of Nepenthes alata. Journal of Bionic Engineering, 2015, 1, 79–87.

    Article  Google Scholar 

  59. Ji A H, Han L B, Dai Z D. Adhesive contact in animal: Morphology, Mechanism and bio-inspired application. Journal of Bionic Engineering, 2011, 8, 345–356.

    Article  Google Scholar 

  60. Yin X Y, Liu Z L, Wang D A, Pei X W, Yu B, Zhou F. Bio-inspired self-healing organic materials: Chemical mechanisms and fabrications. Journal of Bionic Engineering, 2015, 12, 1–16.

    Article  Google Scholar 

  61. Jiang T, Guo Z G. A facile fabrication for amphiphobic aluminum surface. Chemistry Letters, 2015, 44, 324–326.

    Article  Google Scholar 

  62. Zhang Y B, Guo Z G. Micromechanics of lotus fibers. Chemistry Letters, 2014, 43, 1137–1139.

    Article  Google Scholar 

  63. Li. J, Du F, Liu X L, Jiang Z H, Ren L Q. Superhydropho-bicity of bionic alumina surfaces fabricated by hard anodizing. Journal of Bionic Engineering, 2011, 8, 369–374.

    Article  Google Scholar 

  64. Nguyen D D, Tai N H, Lee S B, Kuo W S. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy & Environmental Science, 2012, 5, 7908–7912.

    Article  Google Scholar 

  65. Pan Q M, Wang M, Wang H B. Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes. Applied Surface Science, 2008, 254, 6002–6006.

    Article  Google Scholar 

  66. Jiang Y G, Wang Z Q, Xu H P, Chen H, Zhang X. Investigation into pH-responsive self-assembled monolayers of acylated anthranilate-terminated alkanethiol on a gold surface. Langmuir, 2006, 22, 3715–3720.

    Article  Google Scholar 

  67. Qu M, Zhang B, Song S, Chen L, Zhang L, Cao X. Fabrication of superhydrophobic surfaces on engineering materials by a solution-immersion process. Advance Functional Materials, 2007, 17, 593–596.

    Article  Google Scholar 

  68. Kong L H, Chen X H, Yang G B, Yu L G, Zhang P Y. Preparation and characterization of slice-like Cu2(OH)3NO3 superhydrophobic structure on copper foil. Applied Surface Science, 2008, 254, 7255–7258.

    Article  Google Scholar 

  69. Adlercreutz P. Immobilisation and application of lipases in organic media. Chemical Society Review, 2013, 42, 6406–6436.

    Article  Google Scholar 

  70. Feng L, Zhang Z Y, Mai Z H, Ma Y M, Liu B Q, Jiang L, Zhu D B. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie International Edition, 2004, 43, 2012–2014.

    Article  Google Scholar 

  71. An T, Cho S J, Choi W, Kim J H, Lim S T, Lim G. Preparation of stable superhydrophobic mesh with a biomimetic hierarchical structure. Soft Matter, 2011, 7, 9867–9870.

    Article  Google Scholar 

  72. Darmanin T, Guittard F. Homogeneous growth of conducting polymer nanofibers by electrodeposition for superhy-drophobic and superoleophilic stainless steel meshes. RSC Advances, 2014, 4, 50401–50405.

    Article  Google Scholar 

  73. Lee C, Baik S. Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity. Carbon, 2010, 48, 2192–2197.

    Article  Google Scholar 

  74. Darmanin T, Guittard F. Recent advances in the potential application of bioinspired superhydrophobic materials. Journal of Materials Chemistry A, 2014, 2, 16319–16359.

    Article  Google Scholar 

  75. Deng D, Prendergast D P, MacFarlane J, Bagatin R, Stel-lacci F, Gschwend P M. Hydrophobic meshes for oil spill recovery devices. ACS Applied Materials & Interfaces, 2013, 5, 774–781.

    Article  Google Scholar 

  76. Sun H X, Li A, Qin X J, Zhu Z Q, Liang W D, An J, La P Q, Deng W Q. Three-dimensional superwetting mesh film based on graphene assembly for liquid transportation and selective absorption. ChemSusChem, 2013, 6, 2377–2381.

    Article  Google Scholar 

  77. Crick C R, Gibbins J A, Parkin I P. Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation. Journal of Materials Chemistry A, 2013, 1, 5943–5948.

    Article  Google Scholar 

  78. Cheng Y Y, Lu S X, Xu W G, Wen H D, Wang J. Fabrication of superhydrophobic Au-Zn alloy surfaces on a zinc substrate for roll-down, Self-cleaning and anti-corrosion properties. Journal of Materials Chemistry A, 2015, 3, 16774–16784.

    Article  Google Scholar 

  79. Wang X, Tian W, Liao M Y, Bando Y, Golberg D. Recent advances in solution-processed inorganic nanofilm photodetectors. Chemical Society Review, 2014, 43. 1400–1422.

  80. Zang D M, Wu C X, Zhu R W, Zhang W, Yu X Q, Zhang Y F. Porous copper surfaces with improved superhydrophobicity under oil and their application in oil separation and capture from water. Chemical Communications, 2013, 49, 8410–8412.

    Article  Google Scholar 

  81. Wang B, Guo Z G. Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Applied Physics Letters, 2013, 103, 063704.

    Article  Google Scholar 

  82. La D D, Nguyen T A, Lee S, Kim J W, Kim Y S. A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays. Applied Surface Science, 2011, 257, 5705–5710.

    Article  Google Scholar 

  83. Wang F J, Yu S J, Xue M S, Qu J F, Li W. A superhydro-phobic and superoleophilic miniature mesh box for oil spill clean up. New Journal of Chemistry, 2014, 38, 4388–4393.

    Article  Google Scholar 

  84. Tian D L, Zhang X F, Wang X, Zhai J, Jiang L. Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil. Physical Chemistry Chemical Physics, 2011, 13, 14606–14610.

    Article  Google Scholar 

  85. Li H, Zheng M J, Ma L, Zhu C Q, Lu S. Two-dimensional ZnO nanoflakes coated mesh for separation of water and oil. Materials Research Bulletin, 2013, 48, 25–29.

    Article  Google Scholar 

  86. Ong W L, Yew K W, Tan C F, Adrian T K T, Hong M H, Ho G W. Highly flexible solution processable heterostructured zinc oxide nanowires mesh for environment clean-up application. RSC Advances, 2014, 4, 27481–27487.

    Article  Google Scholar 

  87. Wu J, Chen J, Qasim K, Xia J, Lei W, Wang B P. A hierarchical mesh film with superhydrophobic and superoleophilic properties for oil and water separation. Journal of Chemical Technology and Biotechnology, 2012, 87, 427–430.

    Article  Google Scholar 

  88. Zhao X, Li L X, Li B C, Zhang J P, Wang A Q. Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages. Journal of Materials Chemistry A, 2014, 2, 18281–18287.

    Article  Google Scholar 

  89. Calcagnile P, Fragouli D, Bayer L S, Anyfantis G C, Marti-radonna L, Cozzoli P D, Clingolani R, Athanassiou A. Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano, 2012, 6, 5413–5419.

    Article  Google Scholar 

  90. Wang H Y, Wang E Q, Liu Z J, Gao D, Yuan R X, Sun L Y, Zhu Y J. A novel carbon nanotubes reinforced superhydro-phobic and superoleophilic polyurethane chemical fabrication. Journal of Materials Chemistry A, 2015, 3, 266–273.

    Article  Google Scholar 

  91. Cervin N T, Aulin C, Larsson P T, Wagberg L. Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquid. Cellulose, 2012, 19, 401–424.

    Article  Google Scholar 

  92. Yuan J K, Liu X G, Akbulut O, Hu J Q, Suib S L. Super-wetting nanowire membranes for selective absorption. Nature Nanotechnology, 2008, 3, 332–336.

    Article  Google Scholar 

  93. Shang Y W, Si Y, Raza A, Yang L P, Mao X, Ding B, Yu J Y. An in Situ Polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale, 2012, 4, 7847–7854.

    Article  Google Scholar 

  94. Tang X M, Si Y, Ge J L, Ding B, Liu L F, Zheng G, Luo W J, Yu J Y. In situ polymerization superhydrophobic and su-peroleophilic nanofibrous membranes for gravity driven oil-water separation. Nanoscale, 2013, 5, 11657–11664.

    Article  Google Scholar 

  95. Chaudhary J P, Nataraj S K Gogda A, Meena R. Bio-based superhydrophilic foam membranes for sustainable oil-water separation. Green Chemistry, 2014, 16, 4552–4558.

    Article  Google Scholar 

  96. Su C H. Highly Hydrophobic and oleophilic foam for selective absorption. Applied Surface Science, 2009, 256, 1413–1418.

    Article  Google Scholar 

  97. Zhu Q, Pan Q M, Liu F T. Facile removal and collection of oils from water surfaces through superhydrophobic and su-peroleophilic sponges. Journal of Physical Chemistry C, 2011, 115, 17464–17470.

    Article  Google Scholar 

  98. Wang S H, Li M, Lu Q H. Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Applied Materials & Interfaces, 2010, 2, 677–683.

    Article  Google Scholar 

  99. Zhang M, Wang C Y, Wang S L, Shi Y L, Li J. Fabrication of coral-like superhydrophobic coating on filter paper for water-oil separation. Applied Surface Science, 2012, 261, 764–769.

    Article  Google Scholar 

  100. Lin K A A, Yang H, Petit C, Hsu F K. Removing oil droplets from water using a copper-based metal organic frameworks. Chemical Engineering Journal and the Biochemical Engineering Journal, 2014, 249, 293–301.

    Google Scholar 

  101. Zhang L, Wu J J, Wang Y X, Long Y H, Zhao N, Xu J. Combination of bioinspiration: A general route to superhy-drophobic particles. Journal of the American Chemical Society, 2012, 134, 9879–9881.

    Article  Google Scholar 

  102. Xu L P, Wu X W, Meng J X, Peng J T, Wen Y Q, Zhang X J, Wang S T. Papilla-like magnetic particles with hierarchical structure for oil removal from water. Chemical Communications, 2013, 49, 8752–8754.

    Article  Google Scholar 

  103. Li X H, Guo Y C, Zhang J, Zhang L. Preparation of poly-sulfone microspheres with a hollow core/porous shell structure and their application for oil spill cleanup. Journal of Applied Polymer Science, 2013, 128, 2994–2999.

    Article  Google Scholar 

  104. Xue Z X, Liu M J, Jiang L. Recent developments in polymeric superoleophobic surfaces. Journal of Polymer Science Part B: Polymer Physics, 2012, 50, 1209–1224.

    Article  Google Scholar 

  105. Cheng Q F, Li M Z, Zheng Y M, Su B, Wang S T, Jiang L. Janus interface materials: Superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter, 2011, 7, 5948–5951.

    Article  Google Scholar 

  106. Xiang Y H, Liu F, Xue L X. Under seawater superoleopho-bic PVDF membrane inspired by polydopamine for efficient oil/seawater separation. Journal of Membrane Science, 2015, 476, 321–329.

    Article  Google Scholar 

  107. Wang B, Liang W X, Guo Z G, Liu W M. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Review, 2015, 44, 336–361.

    Article  Google Scholar 

  108. Zhu H, Guo Z G, Liu W M. Adhesion behaviors on super-hydrophobic surfaces. Chemical Communications, 2014, 50, 3900–3913.

    Article  Google Scholar 

  109. Good R J. Contact angle, Wetting, And adhesion: A critical review. Journal of Adhesion Science and Technology, 1992, 6, 3–36.

    Article  Google Scholar 

  110. Miline A J B Elliott J A W, Zabeti P, Zhou J Y, Amirfazli A. Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces. Physical Chemistry Chemical Physics, 2011, 13, 16208–16219.

    Article  Google Scholar 

  111. Michielsen S, Lee H J. Design of a superhydrophobic surface using woven structures. Langmuir, 2007, 23, 6004–6010.

    Article  Google Scholar 

  112. Xue Z X, Wang S T, Lin L, Chen L, Liu M J, Feng L, Jiang L. A novel superhydrophobic and underwater superoleo-phobic hydrogel-coated mesh for oil/water separation. Advances Materials, 2011, 23, 4270–4273.

    Article  Google Scholar 

  113. Wen Q, Di J C, Jiang L, Yu J H, Xu R R. Zeolite-Coated Mesh Film for Efficient Oil-Water Separation. Chemical Science, 2013, 4, 591–595.

    Article  Google Scholar 

  114. Gao X F, Xu L P, Xue Z X, Feng L, Peng J T, Wen Y Q, Wang S T, Zhang X J. Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation. Advances Materials, 2014, 26, 1771–1775.

    Article  Google Scholar 

  115. Lampitt R A, Crowther J M, Badyal J P S. Switching liquid repellent surfaces. Journal of Physical Chemistry B, 2000, 104, 10329–10331.

    Article  Google Scholar 

  116. Howarter J A, Youngblood J P. Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Advances Materials. 2009, 19, 3838–3843.

    Article  Google Scholar 

  117. Turri S, Valsecchi R, Viganỏ M, Levi M. Hydro-philic-oleophobic behavior in thin films from fluoromodified nanoclays and polystyrene. Polymer Bulletin, 2009, 63, 235–243.

    Article  Google Scholar 

  118. Howarter J A, Genson K L, Youngblood J P. Wetting behavior of oleophobic polymer coatings synthesized from fluorosurfactant-macromers. ACS Applied Materials & Interfaces, 2011, 3, 2022–2030.

    Article  Google Scholar 

  119. Yang J, Zhang Z Z, Xu X H, Zhu X T, Men X H, Zhou X Y. Superhydrophilic-superoleophobic coatings. Journal of Materials Chemistry, 2012, 22, 2834–2837.

    Article  Google Scholar 

  120. Kota A K, Kwon G, Choi W, Mabry J M, Tuteja A. Hygro-responsive membranes for effective oil-water separation. Nature Communication, 2012, 3, 1025.

    Article  Google Scholar 

  121. Anastasiadis S H. Development of functional polymer surfaces with controlled wettability. Langmuir, 2013, 29, 9277–9290.

    Article  Google Scholar 

  122. Liu X J, Liang Y M, Zhou F, Liu W M. Extreme wettability and tunable adhesion: Biomimicking beyond nature? Soft Matter, 2012, 8, 2070–2086.

    Article  Google Scholar 

  123. Xin B W, Hao J C. Reversibly switchable wettability. Chemical Society Review, 2010, 39, 769–782.

    Article  Google Scholar 

  124. Gao X F, Jiang L. Biophysics: Water-repellent legs of water striders. Nature, 2004, 432, 36.

    Article  Google Scholar 

  125. Xia F, Jiang L. Bio-inspired, Smart, Multiscale interfacial materials. Advances Materials, 2008, 20, 2842–2858.

    Article  Google Scholar 

  126. Tuteja A, Choi W, Ma M L, Mabry J M, Mazzella S A, Rutledge G C, McKinley G H, Cohen R E. Designing superoleophobic surfaces. Science, 2007, 318, 1618–1622.

    Article  Google Scholar 

  127. Tadmor R. Approaches in wetting phenomena. Soft Matter, 2011, 7, 1577–1580.

    Article  Google Scholar 

  128. Pan S J, Guo R, Xu W J. Durable superoleophobic fabric surfaces with counterintuitive superwettability for polar solvents. AIChE Journal, 2014, 60, 2752–2756.

    Article  Google Scholar 

  129. Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477, 443–447.

    Article  Google Scholar 

  130. Bird J C, Dhiman R, Kwon H M, Varanasi K K. Reducing the contact time of a bouncing drop. Nature, 2013, 503, 385–388.

    Article  Google Scholar 

  131. Wang C, Wu A H F, Lamb R N. Superhydrophobicity and optical transparency in thin films: Criteria for coexistence. Journal of Physical Chemistry C, 2014, 118, 5328–5335.

    Article  Google Scholar 

  132. Liu K S, Jiang L. Metallic surfaces with special wettability. Nanoscale, 2011, 3, 825–838.

    Article  Google Scholar 

  133. Lim H S, Han J T, Kwak D, Jin M H, Cho K. Photor-eversibly switchable superhydrophobic surface with erasable and rewritable pattern. Journal of the American Chemical Society, 2006, 128, 14458–14459.

    Article  Google Scholar 

  134. Das S, Ranjan P, Maiti P S, Singh G, Leitus G, Klajn R. Dual-responsive nanoparticles and their self-assembly. Advances Materials, 2013, 25, 422–426.

    Article  Google Scholar 

  135. Lee C H, Lim H S, Kim J, Cho J H. Counterion-induced reversibly switchable transparency in smart windows. ACS Nano, 2011, 5, 7397–7403.

    Article  Google Scholar 

  136. Grevoisier de G, Fabre P, Corpart J, Leibler L. Switchable tackiness and wettability of a liquid crystalline polymer. Science, 1999, 20, 1246–1249.

    Article  Google Scholar 

  137. Wang B, Guo Z G, Liu W M. pH-responsive smart fabrics with controllable wettability in different surroundings. RSC Advances, 2014, 4, 14684–14690.

    Article  Google Scholar 

  138. Minko S, Müller M, Motornov M, Nitschke M, Grundke K, Stamm M. Two-level structured self-adaptive surfaces with reversibly turnable properties. Journal of the American Chemical Society, 2003, 125, 3896–3900.

    Article  Google Scholar 

  139. Xia F, Zhu Y, Feng L, Jiang L. Smart responsive surfaces switching reversibly between super-hydrophobicity and super-hydrophilicity. Soft Matter, 2009, 5, 275–281.

    Article  Google Scholar 

  140. Xue Z X, Cao Y Z, Liu N, Feng L, Jiang L. Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2014, 2, 2445–2460.

    Article  Google Scholar 

  141. Wang D, Jiao P W, Wang J M, Zhang Q L, Feng L, Yang Z Z. Fast photo-switched wettability and color of surfaces coated with polymer brushes containing spiropyran. Journal of Applied Polymer Science, 2012, 125, 870–875.

    Article  Google Scholar 

  142. Feng X J, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angewandte Chemie International Edition, 2005, 44, 5115–5118.

    Article  Google Scholar 

  143. Zhou Y N, Li N N, Zhang Q, Luo Z H. Light-responsive smart surface with controllable wettability and excellent stability. Langmuir, 2014, 30, 12236–12242.

    Article  Google Scholar 

  144. Sun R D, Nakajima A, Fujishima A, Watanabe T, Hashimoto K. Photoinduced surface wettability conversion of ZnO and TiO2 thin films. Journal of Physical Chemistry B, 2001, 105, 1984–1990.

    Article  Google Scholar 

  145. Huang J Y, Lai Y K, Wang L N, Li S H, Ge M Z, Zhang K Q, Fuchs H, Chi L F. Controllable wettability and adhesion on bioinspired multifunctional TiO2 nanostructure surfaces for liquid manipulation. Journal of Materials Chemistry A, 2014, 2, 18531–18538.

    Article  Google Scholar 

  146. Cao C R, Sun Z X, Li K, Chen Y N, Cao Y Z, Zhang S Y, Feng L. Intergrated oil separation and water purification by a double-layer TiO2-based mesh. Energy & Environmental Science, 2013, 6, 1147–1151.

    Article  Google Scholar 

  147. Liu Y, Lin Z Y, Lin W, Moon K S, Wong C P. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films. ACS Applied Materials & Interfaces, 2012, 4, 3959–3964.

    Article  Google Scholar 

  148. Tian D L, Zhang X F, Tian Y, Wu Y, Wang X, Zhai J, Jiang L. Photo-induced water-oil separation based on switchable superhydrophobicity-superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. Journal of Materials Chemistry, 2012, 22, 19652–19657.

    Article  Google Scholar 

  149. Liu N, Cao Y Z, Lin X, Chen Y N, Feng L, Wei Y. A facile solvent-manipulated mesh for reversible oil/water separation. ACS Applied Materials & Interfaces, 2014, 6, 12821–12826.

    Article  Google Scholar 

  150. Zhang G Y, Li M, Zhang B D, Huang Y, Su Z H. A switchable mesh for on-demand oil-water separation. Journal of Materials Chemistry A, 2014, 2, 15284–15287.

    Article  Google Scholar 

  151. Cheng Z J, Du M, Fu K W, Zhang N Q, Sun K N. pH-controllable water permeation through a nanostructured copper mesh film. ACS Applied Materials & Interfaces, 2012, 4, 5826–5832.

    Article  Google Scholar 

  152. Wang B, Guo Z G. pH-responsive bidirectional oil-water separation material. Chemical Communications, 2013, 49, 9416–9418.

    Article  Google Scholar 

  153. Xue B L, Gao L C, Hou Y P, Liu Z W, Jiang L. Temperature controlled water/oil wettability of a surface fabricated by a block copolymer: Application as a dual water/oil on-off switch. Advanced Materials, 2013, 25, 273–277.

    Article  Google Scholar 

  154. Yu Q, Li X, Zhang Y X, Yuan L, Zhao T L, Chen H. The synergistic effects of stimuli-responsive polymers with nano-structured surfaces: Wettability and protein adsorption. RSC Advances, 2011, 1, 262–269.

    Article  Google Scholar 

  155. Liu M J, Liu X L, Ding C M, Wei Z X, Zhu Y, Jiang L. Reversible underwater switching between superoleophobic-ity and superoleophilicity on conducting polymer nanotube arrays. Soft Matter, 2011, 7, 4163–4165.

    Article  Google Scholar 

  156. Cao Y Z, Liu N, Fu C K, Li K, Tao L, Feng L, Wei Y. Thermo and pH dual-responsive materials for controllable oil/water separation. ACS Applied Materials & Interfaces, 2014, 6, 2026–2030.

    Article  Google Scholar 

  157. Sun W, Zhou S X, You B, Wu L M. Polymer brush-functionalized surfaces with unique reversible double-stimulus responsive wettability. Journal of Materials Chemistry A, 2013, 1, 10646–10654.

    Article  Google Scholar 

  158. Sun W, Zhou S X, You B, Wu L M. A facile method for the fabrication of superhydrophobic films with multiresponsive and reversibly tunable wettability. Journal of Materials Chemistry A, 2013, 1, 3146–3154.

    Article  Google Scholar 

  159. Yang Y Z, Li H D, Cheng S H, Zou G T, Wang C X, Lin Q. Robust diamond meshes with unique wettability properties. Chemical Communications, 2014, 50, 2900–2903.

    Article  Google Scholar 

  160. Jin M H, Wang J, Yao X, Liao M Y, Zhao Y, Jiang L. Underwater oil capture by a three-dimensional network archi-tectured organosilane surface. Advanced Materials, 2011, 23, 2861–2864.

    Article  Google Scholar 

  161. Yan B, Tao J G, Pang C, Zheng Z, Shen Z X, Huan C H A, Yu T. Reversible UV-light-induced ultrahydropho-bic-to-ultrahydrophilic transition in an α-Fe2O3 nanoflakes film. Langmuir, 2008, 24, 10569–10571.

    Article  Google Scholar 

  162. Qin L M, Zhao J, Lei S B, Pan Q M. A smart “strider” can float on both water and oils. ACS Applied Materials & Interfaces, 2014, 6, 21355–21362.

    Article  Google Scholar 

  163. Pan S J, Guo R, Xu W J. Photoresponsive superhydrophobic surfaces for effective wetting control. Soft Matter, 2014, 10, 9187–9192.

    Article  Google Scholar 

  164. Zahner D, Abagat J, Svec F, Fréchet J M J, Levkin P A. A facile approach to superhydrophilic-superhydrophobic patterns in porous polymer films. Advanced Materials, 2011, 23, 3030–3034.

    Article  Google Scholar 

  165. Jin C F, Yan R S, Huang J G. Cellulose substance with reversible photo-responsive wettability by surface modification. Journal of Materials Chemistry, 2011, 21, 17519–17525.

    Article  Google Scholar 

  166. Lim H S, Kwak D, Lee D Y, Lee S G, Cho K. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. Journal of the American Chemical Society, 2007, 129, 4128–4129.

    Article  Google Scholar 

  167. Zhang L B, Zhang Z H, Wang P. Smart surfaces With switchable superoleophilicity and superoelophobicity in aqueous media: Toward controllable oil/water separation. NPG Asia Materials, 2012, 4, e8.

    Article  Google Scholar 

  168. Stratakis E, Mateescu A, Barberoglou M, Vamvakaki M, Fotakis C, Anastasiadis S H. From superhydrophobicity and water repellency to superhydrophilicity: Smart poly-mer-functionalized surfaces. Chemical Communications, 2010, 46, 4136–4138.

    Article  Google Scholar 

  169. Sun W, Zhou S X, You B, Wu L M. Polymer brush-functionalized surfaces with reversible, precisely controllable two-way responsive wettability. Macromole-cules, 2013, 46, 7018–7026.

    Article  Google Scholar 

  170. Lai Y K, Tang Y X, Gong J J, Gong D G, Chi L F, Lin C J, Chen Z. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. Journal of Materials Chemistry, 2012, 22, 7420–7426.

    Article  Google Scholar 

  171. Zhang X, Guo Y G, Zhang P Y, Wu Z S, Zhang Z J. Su-perhydrophobic and superoleophilic nanoparticle film: Synthesis and reversible wettability switching behaviors. ACS Applied Materials & Interfaces, 2012, 4, 1742–1746.

    Article  Google Scholar 

  172. Chen L, Liu M J, Lin L, Zhang T, Ma J, Song Y L, Jiang L. Thermal-responsive hydrogel surface: Tunable wettability and adhesion to oil at the water/solid interface. Soft Matter, 2010, 6, 2708–2712.

    Article  Google Scholar 

  173. Chang J H, Hunter I W. A superhydrophobic to superhy-drophilic in situ wettability switch of microstructured polypyrrole surfaces. Macromolecular Rapid Communications, 2011, 32, 718–723.

    Article  Google Scholar 

  174. Yoon S S, Khang D Y. Switchable wettability of vertical Si naniwire array surface by simple contact-printing of silox-ane oligomers and chemical washing. Journal of Materials Chemistry, 2012, 22, 10625–10630.

    Article  Google Scholar 

  175. Wolfs M, Darmanin T, Guittard F. Versatile superhydro-phobic surfaces from a bioinspired approach. Macromole-cules, 2011, 44, 9286–9294.

    Article  Google Scholar 

  176. An J, Cui J F, Zhu Z Q, Liang W D, Pei C J, Sun H X, Yang B P, Li A. Conductive polymer-coated mesh films with tunable surface wettability for separation of oils and organics from water. Journal of Applied Polymer Science, 2014, 131, 40759–40766.

    Google Scholar 

  177. Rafiee J, Rafiee M A, Yu Z Z, Koratkar N. Superhydro-phobic to superhydrophilic wetting control in graphene films. Advanced Materials, 2010, 22, 2151–2154.

    Article  Google Scholar 

  178. Yang J, Zhang Z Z, Men X H, Xu X H, Zhu X T, Zhou X Y. Counterion exchange to achieve reversibly switchable hydrophobicity and oleophobicity on fabrics. Langmuir, 2011, 27, 7357–7360.

    Article  Google Scholar 

  179. Döbblin M, Tena-Zaera R, Marcilla R, Iturri J, Moya S, Pomposo J A, Mecerreyes D. Multiresponsive PEDOT-ionic liquid materials for the design of surface with switchable wettability. Advanced Functional Materials, 2009, 19, 3326–3333.

    Article  Google Scholar 

  180. Qing G Y, Wang X, Fuchs H, Sun T L. Nucleo-tide-responsive wettability on a smart polymer surface. Journal of the American Chemical Society, 2009, 131, 8370–8371.

    Article  Google Scholar 

  181. Wang X, Qing G Y, Jiang L, Fuchs H, Sun T L. Smart surfaces of water-induced superhydrophobicity. Chemical Communications, 2009, 2658–2660.

  182. Darmanin T, Guittard F. pH- and voltage-switchable su-perhydrophobic surfaces by electrocopolymerization of EDOT derivatives containing carboxylic acids and long al-kyl chains. ChemPhysChem, 2013, 14, 2529–2533.

    Article  Google Scholar 

  183. Xia F, Feng L, Wang S T, Sun T L, Song W L, Jiang W H, Jiang L. Dual-responsive surfaces that switch between su-perhydrophilicity and superhydrophobicity. Advanced Materials, 2006, 18, 432–436.

    Article  Google Scholar 

  184. Guo Y, Xia F, Xu L, Li J, Yang W S, Jiang L. Switchable wettability on cooperative dual-responsive poly-L-lysine surface. Langmuir, 2010, 26, 1024–1028.

    Article  Google Scholar 

  185. Yuan W F, Jiang G Y, Wang J X, Wang G J, Song Y L, Jiang L. Tempreture/light dural-responsive surface with tunable wettability created by modification with an azoben-zene-containing copolymer. Macromolecules, 2006, 39, 1300–1303.

    Article  Google Scholar 

  186. Jiang Y G, Wan P B, Smet M, Wang Z Q, Zhang X. Self-assembled monolayers of a malachite green derivative: Surfaces with pH- and UV-responsive wetting properties. Advanced Materials, 2008, 20, 1972–1977.

    Article  Google Scholar 

  187. Zhu Y, Feng L, Xia F, Zhai J, Wan M X, Jiang L. Chemical dual-responsive wettability of superhydrophobic PANI-PAN coaxial nanofibers. Macromolecular Rapid Communications, 2007, 28, 1135–1141.

    Article  Google Scholar 

  188. Xia F, Ge H, Hou Y, Sun T L, Chen L, Zhang G Z, Jiang L. Multitesponsive surfaces change between superhydro-philicity and superhydrophobicity. Advanced Materials, 2007, 19, 2520–2524.

    Article  Google Scholar 

  189. Leal-Galderon F, Cansell M. The design of emulsions and their fate in the body following enteral and parenteral routes. Soft Matter, 2012, 8, 10213–10225.

    Article  Google Scholar 

  190. Ujiiye-Ishii K, Kwon E, Kasai H, Nakanishi H, Oikawa H. Methodological features of the emulsion and reprecipitation methods for organic nanocrystal fabrication. Crystal Growth and Design, 2008, 8, 369–371.

    Article  Google Scholar 

  191. Huang Q X, Mao F Y, Han X, Yan J H, Chi Y. Characterization of emulsified water in petroleum sludge. Fuel, 2014, 118, 214–219.

    Article  Google Scholar 

  192. Mandal A, Samanta A, Bera A, Ojha K. Characterization of oil-water emulsion and its use in enhanced oil recovery. Industrial and Engineering Chemistry Research, 2010, 49, 12756–12761.

    Article  Google Scholar 

  193. Solomon B R, Hyder M N, Varanasi K K. Separating oil-water nanoemulsions using flux-ehanced hierarchical membranes. Scientific Reports, 2014, 4, 5504.

    Article  Google Scholar 

  194. Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie International Edition, 2004, 116, 2046–2048.

    Article  Google Scholar 

  195. Zhang F, Zhang W, Shi Z, Wang D, Jin J. Nanowire haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Advanced Materials, 2013, 25, 4192–4198.

    Article  Google Scholar 

  196. Jiang T M, Hirasaki G J, Miller C A, Ng S. Effects of Clay Wettability and process Vvriables on separation of diluted bitumen emulsion. Energy and Fuels, 2011, 25, 545–554.

    Article  Google Scholar 

  197. Kota A K, Li Y, Mabry J M, Tuteja A. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. Advanced Materials, 2012, 24, 5838–5843.

    Article  Google Scholar 

  198. Li J, Shi L, Chen Y, Zhang Y B, Guo Z G, Liu W M. Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. Journal of Materials Chemistry, 2012, 22, 9774–9781.

    Article  Google Scholar 

  199. Zhang Y B, Chen Y, Shi L, Li J, Guo Z G. Recent progress of double-structural and functional materials with special wettability. Journal of Materials Chemistry, 2012, 22, 799–815.

    Article  Google Scholar 

  200. Chen L, Eckstein E C, Lindner E. Computation of transient flow rates in passive pumping micro-fluidic systems. Lab on a Chip, 2009, 9, 107–114.

    Article  Google Scholar 

  201. Peng X S, Jin J, Nakamura Y, Ohno T, Ichinose I. Ultrafast permeation of water through protein-based membranes. Nature Nanotechnology, 2009, 4, 353–357.

    Article  Google Scholar 

  202. Jong J D, Lammertink R G H, Wessling M. Membranes and microfluidices: A review. Lab on a Chip, 2006, 6, 1125–1139.

    Article  Google Scholar 

  203. Striemer C C, Gaborski T R, McGrath J L, Fauchet P M. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature, 2007, 445, 749–753.

    Article  Google Scholar 

  204. Drioli E, Romano M. Progress and new perspectives on integrated membrane operations for sustainable industrial growth. Industrial and Engineering Chemistry Research, 2001, 40, 1277–1300.

    Article  Google Scholar 

  205. Elimelech M, Phillip W A. The future of seawater desalination: Energy, Technology, And the environment. Science, 2011, 333, 712–717.

    Article  Google Scholar 

  206. Ochoa N A, Masuelli M, Marchese J. Effect of hydro-philicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. Journal of Membrane Science, 2003, 226, 203–211.

    Article  Google Scholar 

  207. Yan L, Li Y S, Xiang C B. Preparation of poly(vinylidene fluoride) (PVDF) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer, 2005, 46, 7701–7706.

    Article  Google Scholar 

  208. Masuelli M, Marchese J, Ochoa N A. SPC/PVDF membranes for emulsified oily wastewater treatment. Journal of Membrane Science, 2009, 326, 688–693.

    Article  Google Scholar 

  209. Yan L, Li Y S, Xiang C B, Xianda S. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. Journal of Membrane Science, 2006, 276, 162–167.

    Article  Google Scholar 

  210. Hashim N A, Liu F, Li K. A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer. Journal of Membrane Science, 2009, 345, 134–141.

    Article  Google Scholar 

  211. Van de Witte P, Dijkstra P J, Van den Berg J W A, Feijen J. Phase separation processes in polymer solutions in relation to membrane formation. Journal of Membrane Science, 1996, 117, 1–31.

    Article  Google Scholar 

  212. Zhang W B, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Super-hydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Advanced Materials, 2013, 25, 2071–2076.

    Article  Google Scholar 

  213. Huang M L, Si Y, Tang X M, Zhu Z G, Ding B, Liu L F, Zheng G, Luo W J, Yu J Y. Gravity driven separation of emulsified oil-water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. Journal of Materials Chemistry A, 2013, 1, 14071–14074.

    Article  Google Scholar 

  214. Gu J C, Xiao P, Chen J, Liu F, Huang Y J, Li G, Zhang J W, Chen T. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions. Journal of Materials Chemistry A, 2014, 2, 15268–15272.

    Article  Google Scholar 

  215. Wang C F, Lin S J. Robust Superhydropho-bic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water. ACS Applied Materials & Interfaces, 2013, 5, 8861–8864.

    Article  Google Scholar 

  216. Li L X, Li B C, Wu L, Zhao X, Zhang J P. Magnetic, Superhydrophobic and durable silicone sponges and their Applications in removal of organic pollutants from water. Chemical Communications, 2014, 50, 7831–7833.

    Article  Google Scholar 

  217. Shi Z, Zhang W B, Zhang F, Liu X, Wang D, Jin J, Jiang L. Ultrafast separation of emulsified oil/water mixtures by ul-trathin free-standing single-walled carbon nanotube network films. Advanced Materials, 2013, 25, 2422–2427.

    Article  Google Scholar 

  218. Wang Y H, Tao S Y, An Y L. A reverse membrane emulsi-fication process based on a hierarchically porous monolith for high efficiency water-oil separation. Journal of Materials Chemistry A, 2013, 1, 1701–1708.

    Article  Google Scholar 

  219. Zhu Y Z, Zhang F, Wang D, Pei X F, Zhang W B, Jin J. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. Journal of Materials Chemistry A, 2013, 1, 5758–5765.

    Article  Google Scholar 

  220. Zhou K, Zhang Q G, Li H M, Guo N N, Zhu A M, Liu Q L. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions. Nanoscale, 2014, 6, 10363–10369.

    Article  Google Scholar 

  221. Gao P, Liu Z Y, Sun D D, Ng W J. The efficient separation of surfactant-stabilized oil-water emulsions with a flexible and superhydrophilic graphene-TiO2 composite membrane. Journal of Materials Chemistry A, 2014, 2, 14082–14088.

    Article  Google Scholar 

  222. Gao S J, Shi Z, Zhang W B, Zhang F, Jin J. Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano, 2014, 8, 6344–6352.

    Article  Google Scholar 

  223. Bansal S, Arnim V V, Stegmaier T, Planck H. Effect of fibrous filter properties oil-in-water-emulsion separation and filtration performance. Journal of Hazardous materials, 2011, 190, 45–50.

    Article  Google Scholar 

  224. Zhou Y B, Chen L, Hu X M, Lu J. Modified resin oalescer for oil-in-water emulsion treatment: Effect of operating conditions on oil removal performance. Industrial and Engineering Chemistry Research, 2009, 48, 1660–1664.

    Article  Google Scholar 

  225. Kwon G, Kota A K, Li Y X, Sohani A, Mabry J M, Tuteja A. On-demand separation of oil-water mixtures. Advanced Materials, 2012, 24, 3666–3671.

    Article  Google Scholar 

  226. Tao M M, Xue L X, Liu F, Jiang L. An intelligent super-wetting PVDF membrane showing switchable transport performance for oil/water separation. Advanced Materials, 2014, 26, 2943–2948.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Guo, Z. Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces. J Bionic Eng 13, 1–29 (2016). https://doi.org/10.1016/S1672-6529(14)60156-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60156-6

Keywords

Navigation