Skip to main content
Log in

Bio-Inspired Electromagnetic Protection Based on Neural Information Processing

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Electronic systems are vulnerable in electromagnetic interference environment. Although many solutions are adopted to solve this problem, for example shielding, filtering and grounding, noise is still introduced into the circuit inevitably. What impresses us is the biological nervous system with a vital property of robustness in noisy environment. Some mechanisms, such as neuron population coding, degeneracy and parallel distributed processing, are believed to partly explain how the nervous system counters the noise and component failure. This paper proposes a novel concept of bio-inspired electromagnetic protection making reference to the characteristic of neural information processing. A bionic model is presented here to mimic neuron populations to transform the input signal into neural pulse signal. In the proposed model, neuron provides a dynamic feedback to the adjacent one according to the concept of synaptic plasticity. A simple neural circuitry is designed to verify the rationality of the bio-inspired model for electromagnetic protection. The experiment results display that bio-inspired electromagnetic protection model has more power to counter the interference and component failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muchaidze G, Koo J, Cai Q, Li T, Han L J, Martwick A, Wang K, Min J, Drewniak J L, Pommerenke D. Susceptibility scanning as a failure analysis tool for system-level electrostatic discharge problems. IEEE Transactions on Electromagnetic Compatibility, 2008, 50, 268–276.

    Article  Google Scholar 

  2. Perumalraj R, Dasaradan B S. Electromagnetic shielding effectiveness of copper core yarn knitted fabrics. Indian Journal of Fibre & Textile Research, 2009, 34, 149–154.

    Google Scholar 

  3. Yeh C T, Ker M D. Study of intrinsic characteristics of ESD protection diodes for high-speed I/O applications. Microelectronics Reliability, 2012, 52, 1020–1030.

    Article  Google Scholar 

  4. Pommerenke D, Koo J, Muchaidze G. Finding the root cause of an ESD upset event. Proceedings of the 2006 DesignCon, Santa Clara, USA, 2006, 12–36.

    Google Scholar 

  5. Han L J, Koo J. Pommerenke D, Beetner D, Carlton R. Experiment investigation of the ESD sensitivity of an 8-Bit microcontroller. Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Hawaii, USA, 2007, 1–6.

    Google Scholar 

  6. Faisal A A, Selen L P, Wolpert D M. Noise in the nervous system. Nature Reviews Neuroscience, 2008, 9, 292–303.

    Article  Google Scholar 

  7. Kitano H. Biological robustness. Nature Reviews Genetics, 2004, 5, 826–837.

    Article  Google Scholar 

  8. Ay N, Flack J, Krakauer D C. Robustness and complexity co-constructed in multimodal signaling networks. Philosophical Transactions, 2007, 362, 441–447.

    Article  Google Scholar 

  9. Negro F, Holobar A, Farina D. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates. The Journal of Physiology, 2009, 587, 5925–5938.

    Article  Google Scholar 

  10. Stokes M. The spatiotemporal structure of population coding in monkey parietal cortex. The Journal of Neuroscience, 2011, 31, 1167–1169.

    Article  Google Scholar 

  11. Noppeney U, Friston K J, Price C J. Degenerate neuronal systems sustaining cognitive functions. Journal of Anatomy, 2004, 205, 433–442.

    Article  Google Scholar 

  12. Edelman G M, Gally J A. Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America, USA, 2001, 98, 13763–13768.

    Article  Google Scholar 

  13. Tepper J M, Wilson C J, Koós T. Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Research Reviews, 2008, 58, 272–281.

    Article  Google Scholar 

  14. Hebb D O. The Organization of Behavior: A Neuropsy-chological Theory, Psychology Press, New York, USA, 1949.

    Google Scholar 

  15. Maren S. Synaptic mechanisms of associative memory in the amygdale. Neuron, 2005, 47, 783–786.

    Article  Google Scholar 

  16. Weinberger N M. Associative representational plasticity in the auditory cortex: A synthesis of two disciplines. Learning & Memory, 2007, 14, 1–16.

    Article  Google Scholar 

  17. Feldman D E. Synaptic mechanisms for plasticity in neo-cortex. Annual Review of Neuroscience, 2009, 32, 33–35.

    Article  Google Scholar 

  18. Holtmaat A, Svoboda K. Experience-dependant structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 2009, 10, 647–658.

    Article  Google Scholar 

  19. Liu S H, Yuan L, Chu J. Electromagnetic bionics—a new area of electromagnetic protection. Chinese Journal of Nature, 2009, 31, 1–7. (in Chinese)

    Google Scholar 

  20. Liu S H, Chu J, Yuan L. Study and progress of electromagnetic bionics for electronic system. Journal of Academy Armored Force Engineering, 2009, 23, 2–6. (in Chinese)

    Google Scholar 

  21. Liu S H, Man M H, Ju Z Q, Chang X L, Chu J, Yuan L. The immunity of evolvable digital circuits to ESD interference. Journal of Bionic Engineering, 2012, 9, 358–366.

    Article  Google Scholar 

  22. Eckhorn R, Reitboeck H J, Arndt M, Dicke P. Feature linking via synchronous among distributed assemblies: Simulation results from cat visual cortex. Neural Computation, 1990, 2, 293–307.

    Article  Google Scholar 

  23. Xiong Y, Han W H, Zhang Y B, Yang F H. A design of pulse coded CMOS neuron circuit. Journal of Electron Devices, 2011, 34, 286–291. (in Chinese)

    Google Scholar 

  24. Lapicque L. Recherches quantitatives sur lexcitation électrique des nerfs traitée comme une polarization’. Journal de Physiologie et de Pathologie Générale, 1907, 9, 620–635. (in French)

    Google Scholar 

  25. Abbott L F. Lapicques introduction of the integrate-and-fire model neuron (1907)’. Brain Research Bulletin, 1999, 50, 303–304.

    Article  Google Scholar 

  26. Matolin D, Schreiter S, Getzlaff S, Schuffny R. An analog VLSI pulsed neural network implementation for image segmentation. Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04), Dresden, Germany, 2004, 51–55.

    Google Scholar 

  27. Xiong Y, Han W H, Zhao K, Zhang Y B, Yang F H. An analog CMOS pulse coupled neural network for image segmentation. Proceedings of 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, China, 2010, 1883–1885.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, X., Liu, S., Man, M. et al. Bio-Inspired Electromagnetic Protection Based on Neural Information Processing. J Bionic Eng 11, 151–157 (2014). https://doi.org/10.1016/S1672-6529(14)60030-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60030-5

Keywords

Navigation