Skip to main content
Log in

Abigaille-III: A Versatile, Bioinspired Hexapod for Scaling Smooth Vertical Surfaces

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper presents a novel, legged robot, Abigaille-III, which is a hexapod actuated by 24 miniature gear motors. This robot uses dual-layer dry adhesives to climb smooth, vertical surfaces. Because dry adhesives are passive and stick to various surfaces, they have advantages over mechanisms such as suction, claws and magnets. The mechanical design and posture of Abigaille-III were optimized to reduce pitchback forces during vertical climbing. The robot’s electronics were designed around a Field Programmable Gate Array, producing a versatile computing architecture. The robot was reconfigured for vertical climbing with both 5 and 6 legs, and with 3 or 4 motors per leg, without changes to the electronic hardware. Abigaille-III demonstrated dexterity through vertical climbing on uneven surfaces, and by transferring between horizontal and vertical surfaces. In endurance tests, Abigaille-III completed nearly 4 hours of continuous climbing and over 7 hours of loitering, showing that dry adhesive climbing systems can be used for extended missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autumn K, Peattie A M. Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 2002, 42, 1081–1090.

    Article  Google Scholar 

  2. Kesel A B, Martin A, Seidl T. Getting a grip on spider attachment: An AFM approach to microstructure adhesion in arthropods. Smart Materials and Structures, 2004, 13, 512–518.

    Article  Google Scholar 

  3. Seidl T, Vidoni R. Adhesion to flat surfaces: From spiders to stickers. Spider Ecophysiology, Springer, 2013, 463–473.

    Chapter  Google Scholar 

  4. Zhou M, Pesika N, Zeng H, Tian Y, Israelachvili J. Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces. Friction, 2011, 1, 114–129.

    Article  Google Scholar 

  5. Yu J, Chary S, Das S, Tamelier J, Pesika N S, Turner K L, Israelachvili J N. Gecko-inspired dry adhesive for robotic applications. Advanced Functional Materials, 2011, 21, 3010–3018.

    Article  Google Scholar 

  6. Murphy M P, Aksak B, Sitti M. Gecko-inspired directional and controllable adhesion. Small, 2009, 5, 170–175.

    Article  Google Scholar 

  7. Kwak M K, Jeong H E, Kim T, Yoon H, Suh K Y. Bio-inspired slanted polymer nanohairs for anisotropic wetting and directional dry adhesion. Soft Matter, 2010, 6, 1849–1857.

    Article  Google Scholar 

  8. Sameoto D, Menon C. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives. Journal of Micromechanics and Microengineering, 2009, 19, 115002.

    Article  Google Scholar 

  9. Unver O, Sitti M. Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads. The International Journal of Robotics Research, 2010, 29, 1761–1777.

    Article  Google Scholar 

  10. Krahn J, Liu Y, Sadeghi A, Menon C. A tailless timing belt climbing platform utilizing dry adhesives with mushroom caps. Smart Materials and Structures, 2011, 20, 1–11.

    Google Scholar 

  11. Gittens C, Goundar D, Law D, Minor J, Menon C. TBCP-I: towards the development of a timine belt based climbing platform. Proceedings of the IEEE/RA/EMB/IFMBE International Conference on Applied Bionics and Biomechanics, Venice, Italy, 2010.

    Google Scholar 

  12. Murphy M P, Sitti M. Waalbot: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives. IEEE/ASME Transactions on Mechatronics, 2007, 12, 330–338.

    Article  Google Scholar 

  13. Murphy M P, Kute C, Menguc Y, Sitti M. Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. The International Journal of Robotics Research, 2010, 30, 118.

    Article  Google Scholar 

  14. Daltorio K, Wei T E, Gorb S N, Ritzmann R E, Quinn R D. Passive foot design and contact area analysis for climbing Mini-Whegs. Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, 2007, 1274–1279.

    Google Scholar 

  15. Daltorio K A, Witushynsky T C, Wile G D, Palmer L R, Malek A A, Ahmad M R, Southard L, Gorb S N, Ritzmann R E, Quinn R D. A body joint improves vertical to horizontal transitions of a wall-climbing robot. Proceedings of the IEEE International Conference on Robotics and Automation, Pasedena, USA, 2008, 3046–3051.

    Google Scholar 

  16. Menon C, Sitti M. A biomimetic climbing robot based on the gecko. Journal of Bionic Engineering, 2006, 3, 115–125.

    Article  Google Scholar 

  17. Unver O, Uneri A, Aydemir A, Sitti M. Geckobot: A gecko inspired climbing robot using elastomer adhesives. Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006, 2329–2335.

    Google Scholar 

  18. Kim S, Spenko M, Trujillo S, Heyneman B, Mattoli V, Cutkosky M R. Whole body adhesion: Hierarchical, directional and distributed control of adhesive forces for a climbing robot. Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, 2007, 1268–1273.

    Google Scholar 

  19. Menon C, Li Y, Sameoto D, Martens C. Abigaille-I: Towards the development of a spider-inspired climbing robot for space use. Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, USA, 2008, 384–389.

    Google Scholar 

  20. Li Y, Ahmed A, Sameoto D, Menon C. Abigaille II: Toward the development of a spider-inspired climbing robot. Robotica, 2012, 30, 79–89.

    Article  Google Scholar 

  21. Fremerey M, Gorb S, Heepe L, Kasper D, Witte H. MaTBot: A Magnetoadhesive track robot for the inspection of artificial smooth substrates. International Symposium on Adaptive Motion of Animals and Machines, Awaji, Japan, 2011, 19–20.

    Google Scholar 

  22. Peyvandi A, Soroushian P, Lu J. A new self-loading locomotion mechanism for wall climbing robots employing biomimetic adhesives. Journal of Bionic Engineering, 2013, 10, 12–18.

    Article  Google Scholar 

  23. Boscariol P, Henrey M, Li Y, Menon C. Optimal gait for bioinspired climbing robots using dry adhesives: A quasi-static investigation. Journal of Bionic Engineering, 2013, 10, 1–11.

    Article  Google Scholar 

  24. Zhang H, Zhang J, Zong G, Wang W, Liu R. Sky Cleaner 3: A real pneumatic climbing robot for glass-wall cleaning. IEEE Robotics & Automation Magazine, 2006, 13, 32–41.

    Article  Google Scholar 

  25. Qian Z Y, Zhao Y Z, Fu Z, Cao Q X. Design and realization of a non-actuated glass-curtain wall-cleaning robot prototype with dual suction cups. The International Journal of Advanced Manufacturing Technology, 2006, 30, 147–155.

    Article  Google Scholar 

  26. Shang J, Sattar T, Chen S, Bridge B. Design of a climbing robot for inspecting aircraft wings and fuselage. Industrial Robot: An International Journal, 2007, 34, 495–502.

    Article  Google Scholar 

  27. Elkmann N, Felsch T, Sack M, Böhme T, Hortig J, Saenz J. Modular climbing robot for service-sector applications. Industrial Robot: An International Journal, 1999, 26, 460–465.

    Article  Google Scholar 

  28. Luk B L, Cooke D S, Galt S, Collie A A, Chen S. Intelligent legged climbing service robot for remote maintenance applications in hazardous environments. Robotics and Autonomous Systems, 2005, 53, 142–152.

    Article  Google Scholar 

  29. Xu Z, Ma P. A wall-climbing robot for labelling scale of oil tanks volume’. Robotica, 2002, 20, 209–212.

    Article  Google Scholar 

  30. Shen W, Gu J, Shen Y. Permanent magnetic system design for the wall-climbing robot. Applied Bionics and Biomechanics, 2006, 3, 151–159.

    Article  Google Scholar 

  31. Palmer L R, Diller E D, Quinn R D. Design of a wall-climbing hexapod for advanced maneuvers. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, 2009, 625–630.

    Google Scholar 

  32. Spenko M J, Haynes G C, Saunders J A, Cutkosky M R, Rizzi A A, Full R J, Koditschek D E. Biologically inspired climbing with a hexapedal robot. Journal of Field Robotics, 2008, 25, 223–242.

    Article  Google Scholar 

  33. Hansen W R, Autumn K. Evidence for self-cleaning in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 385–389.

    Article  Google Scholar 

  34. Lee J, Fearing R S. Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. Langmuir, 2008, 24, 10587–10591.

    Article  Google Scholar 

  35. Greiner C, del Campo A, Arzt E. Adhesion of bioinspired micropatterned surfaces: Effects of pillar radius, aspect ratio, and preload. Langmuir, 2007, 23, 3495–3502.

    Article  Google Scholar 

  36. Li Y, Sameoto D, Menon C. Enhanced compliant adhesive design and fabrication with dual-level hierarchical structure. Journal of Bionic Engineering, 2010, 7, 228–234.

    Article  Google Scholar 

  37. Krahn J, Sameoto D, Menon C. Controllable biomimetic adhesion using embedded phase change material. Smart Materials and Structures, 2011, 20, 015014.

    Article  Google Scholar 

  38. Jusufi A, Goldman D I, Revzen S, Full R J. Active tails enhance arboreal acrobatics in geckos. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4215–4219.

    Article  Google Scholar 

  39. Vidoni R, Gasparetto A. Efficient force distribution and leg posture for a bio-inspired spider robot. Robotics and Autonomous Systems, 2011, 59, 142–150.

    Article  Google Scholar 

  40. Mahfoudi C, Djouani K, Rechak S, and Bouaziz M. Optimal force distribution for the legs of a hexapod robot. Proceedings of the International Conference on Control Applications, Istanbul, Turkey, 2003, 657–663.

    Google Scholar 

  41. Vujicuc M. Linear Algebra Throughly Explained, 1st ed, Springer, Berlin, 2007.

    Google Scholar 

  42. Craig J J. Introduction to Robotics: Mechanics and Control, 3rd ed, Pearson Education, Upper Saddle River, 2005.

    Google Scholar 

  43. Audet C, Dennis J E. Analysis of Generalized Pattern Searches. SIAM Journal of Optimization, 2003, 13, 889–903.

    Article  MathSciNet  MATH  Google Scholar 

  44. Mitchell M. An Introduction to Genetic Algorithms, MIT Press, Cambridge, 1998.

    MATH  Google Scholar 

  45. Hansen J A, Gupta K C, Kazerounian S M K. Generation and evaluation of the workspace of a manipulator. The International Journal of Robotics Research, 1983, 2, 22–31.

    Article  Google Scholar 

  46. Kroner E, Maboudian R, Arzt E. Adhesion characteristics of PDMS surfaces during repeated pull-off force measurements. Advanced Engineering Materials, 2010, 12, 398–404.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Menon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henrey, M., Ahmed, A., Boscariol, P. et al. Abigaille-III: A Versatile, Bioinspired Hexapod for Scaling Smooth Vertical Surfaces. J Bionic Eng 11, 1–17 (2014). https://doi.org/10.1016/S1672-6529(14)60015-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60015-9

Keywords

Navigation