Skip to main content
Log in

High-Lift Effect of Bionic Slat Based on Owl Wing

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

A slat without a cove is built on the basis of a bionic airfoil (i.e. stowed multi-element airfoil), which is extracted from a long-eared owl wing. The three-dimensional models with a deployed slat and a stowed slat are measured in a low-turbulence wind tunnel. The results are used to characterize high-lift effect: compared with the stowed slat, the deployed slat works more like a spoiler at low angles of attack, but like a conventional slat or slot at high angles of attack. In addition, it can also increase stall angle and maximum lift coefficient, and postpone the decrease in the gradient of the lift coefficient. At the same time, the flow field visualized around both three-dimensional models suggests the leading-edge separation associated with the decrease in the gradient of the lift coefficient. Furthermore, the related two-dimensional simulation well agrees with the analysis of the lift coefficient, as the complement to the experiment. The bionic slat may be used as reference in the design of leading-edge slats without a cove.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayes J A, Horne W C, Soderman P T, Bent P H. Airframe noise characteristics of a 4.7% scale DC-10 model. AIAA Paper, 1997, 97–1594.

    Google Scholar 

  2. Soderman P T, Kafyeke F, Boudreau J, Burnside N J, Jaeger S M, Chandrasekharan R. Airframe noise study of a Bombardier CRJ-700 aircraft model in the NASA Ames 7- by 10-foot wind tunnel. International Journal of Aeroacoustics, 2004, 3, 1–42.

    Article  Google Scholar 

  3. Chow L C, Mau K, Remy H. Landing gear and high lift devices airframe noise research. AIAA Paper, 2002, 2002–2408.

    Google Scholar 

  4. Ma Z K. Slat noise attenuation using acoustic liner. AIAA Paper, 2005, 2005–3009.

    Google Scholar 

  5. Smith M G, Chow L C, Molin N. Attenuation of slat trailing edge noise using slat gap acoustic liners. AIAA Paper, 2006, 2006–2666.

    Google Scholar 

  6. Choudhari M, Khorrami M R, Lockard D P. Slat cove noise modeling: A posteriori analysis of unsteady RANS simulations. AIAA Paper, 2002, 2002–2468.

    Google Scholar 

  7. Takeda K, Ashcroft G B, Zhang X. Unsteady aerodynamics of slat cove flow in a high-lift device configuration. AIAA Paper, 2001, 2001-0706.

    Google Scholar 

  8. Graham R R. The silent flight of owls. Journal of Royal Aeronautics Society, 1934, 38, 837–843.

    Article  Google Scholar 

  9. Lilley G M. A study of the silent flight of the owl. AIAA Paper, 1998, 98–2340.

    Google Scholar 

  10. Kroeger R A, Gruschka H D, Helvey T C. Low speed aerodynamics for ultra-quiet flight. Air Force Flight Dynamics Laboratory Technical Report, 1971, 71–75.

    Google Scholar 

  11. Bachmann T, Klan S, Baumgartner W, Klaas M, Schroder W, Wagner H. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia. Frontiers in Zoology, 2007, 4, 23.

    Article  Google Scholar 

  12. Nachtigall W, Wedekind F, Dreher A. Hinweise auf Aerodynamische Rauhigkeitseffekte an Vogel-Flogelprofilen. Biona-report 3, Bird Flight–Vogelflug, 1985, 195–218. (in German)

    Google Scholar 

  13. Nachtigall W, Kempf B. Comparative studies on the function of the bastard wing (alula spuria) in the flight biology of birds. Journal of Comparative Physiology, 1971, 71, 326–341.

    Google Scholar 

  14. Meseguer J, Franchini S, Perez-Grande I, Sanz J L. On the aerodynamics of leading-edge high-lift devices of avian wings. Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, 2005, 219, 63–68.

    Article  Google Scholar 

  15. Nachtigall W, Klimbingat A. Messung der Flügelgeometrie mit der Profilkamm-Methode und geometrische Flügelkennzeichnung einheimischer Eulen. Biona-report 3, Bird Flight–Vogelflug, 1985, 45–86. (in German)

    Google Scholar 

  16. Biesel W, Butz H, Nachtigall W. Erste Messungen der Flügelgeometrie bei frei gleitfliegenden Haustauben (columbia livia var. domestica) unter Benutzung neu ausgearbeiteter Verfahren der Windkanaltechnik und der Stereophotogrammetrie. Biona-report 3, Bird Flight–Vogelflug, 1985, 139–160. (in German)

    Google Scholar 

  17. Liu T S, Kuykendoll K, Rhew R, Jones S. Avian wing geometry and kinematics. AIAA Paper, 2006, 44, 954–963.

    Article  Google Scholar 

  18. Klan S, Bachmann T, Klaas M, Wagner H, Schroder W. Experimental analysis of the flow field over a novel owl based airfoil. Experiments in Fluids, 2009, 46, 975–989.

    Article  Google Scholar 

  19. Burgmann S, Dannemann J, Schroder W. Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Experiments in Fluids, 2008, 44, 609–622.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjiang Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, C., Ren, L., Liang, P. et al. High-Lift Effect of Bionic Slat Based on Owl Wing. J Bionic Eng 10, 456–463 (2013). https://doi.org/10.1016/S1672-6529(13)60243-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(13)60243-7

Keywords

Navigation