Skip to main content
Log in

An Efficient Multi-Scale Modelling Approach for ssDNA Motion in Fluid Flow

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The paper presents a multi-scale modelling approach for simulating macromolecules in fluid flows. Macromolecule transport at low number densities is frequently encountered in biomedical devices, such as separators, detection and analysis systems. Accurate modelling of this process is challenging due to the wide range of physical scales involved. The continuum approach is not valid for low solute concentrations, but the large timescales of the fluid flow make purely molecular simulations prohibitively expensive. A promising multi-scale modelling strategy is provided by the meta-modelling approach considered in this paper. Meta-models are based on the coupled solution of fluid flow equations and equations of motion for a simplified mechanical model of macromolecules. The approach enables simulation of individual macromolecules at macroscopic time scales. Meta-models often rely on particle-corrector algorithms, which impose length constraints on the mechanical model. Lack of robustness of the particle-corrector algorithm employed can lead to slow convergence and numerical instability. A new FAst Linear COrrector (FALCO) algorithm is introduced in this paper, which significantly improves computational efficiency in comparison with the widely used SHAKE algorithm. Validation of the new particle corrector against a simple analytic solution is performed and improved convergence is demonstrated for ssDNA motion in a lid-driven micro-cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freemantle M. Microscale technology. Chemical and Engineering News, 1999, 22, 27–36.

    Google Scholar 

  2. Ehrfeld W, Hessel V, Lowe H. Microreactors: New Technology for Modern Chemistry, Wiley-VHC, Weiheim, 2000.

    Book  Google Scholar 

  3. Nguyen N T, Wu Z. Micromixers: A review. Journal of Micromechanics and Microengineering, 2005, 15, 1–16.

    Article  Google Scholar 

  4. Squires T M, Quake S R. Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 2005, 77, 977–1026.

    Article  Google Scholar 

  5. Whitesides G. The origins and the future of microfluidics. Nature, 2006, 442, 368–373.

    Article  Google Scholar 

  6. Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 2004, 36, 381–411.

    Article  Google Scholar 

  7. Stroock A D, Dertinger S K W, Ajdari A, Mezic I, Stone H A, Whitesides G M. Chaotic mixer for microchannels. Science, 2002, 295, 647–651.

    Article  Google Scholar 

  8. Ottino J M, Wiggins S. Introduction: Mixing in microfluidics. Philosophical Transactions of Royal Society London A, 2004, 362, 923–935.

    Article  MathSciNet  Google Scholar 

  9. Zhang Y, Barber R W, Emerson D R. Part separation in microfluidic devices — SPLITT fractionation and microfluidics. Current Analytical Chemistry, 2005, 1, 345–354.

    Article  Google Scholar 

  10. Gargiuli J, Shapiro E, Gulhane H, Nair G, Drikakis D, Vadgama P. Microfluidic systems for in situ formation of nylon 6,6 membranes. Journal of Membrane Science, 2006, 282, 257–265.

    Article  Google Scholar 

  11. Pasas S A, Lacher N A, Davies M I, Lunte S M. Detection of homocysteine by conventional and microchip capillary electrophoresis/electrochemistry. Electrophoresis, 2002, 23, 759–766.

    Article  Google Scholar 

  12. Fanguy J C, Henry C S. The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection. Electrophoresis, 2002, 23, 767–773.

    Article  Google Scholar 

  13. Shi Y N, Simpson P C, Scherer J R, Wexler D, Skibola C, Smith M T, Mathies R A. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Analytical Chemistry, 1999, 71, 5354–5361.

    Article  Google Scholar 

  14. Simpson J W, Ruiz-Martinez M C, Mulhern G T, Berka J, Latimer J R, Ball J A, Rothberg J M, Went G T. A transmission imaging spectrograph and microfabricated channel system for DNA analysis. Electrophoresis, 2000, 21, 135–149.

    Article  Google Scholar 

  15. Agarwal U S, Dutta A, Mashelkar R A. Migration of macromolecules under flow: The physical origin and engineering implications. Chemical Engineering Science, 1994, 49, 1693–1717.

    Article  Google Scholar 

  16. Blom M T, Chmela E, Gardeniers J G E, Tijssen R, Elwenspoek M, van den Berg A. Design and fabrication of a hydrodynamic chromatography chip. Sensors and Actuators B, 2002, 82, 111–116.

    Article  Google Scholar 

  17. Wang P C, Gao J, Lee C S. High-resolution chiral separation using microfluidics-based membrane chromatography. Journal of Chromatography A, 2002, 942, 115–122.

    Article  Google Scholar 

  18. Stein D, van der Heyden F H J, Koopmans J A, Dekker C. Pressure-driven transport of confined DNA polymers in fluidic channels. PNAS, 2006, 103, 15853–15858.

    Article  Google Scholar 

  19. Wong P K, Lee Y K, Ho C M. Deformation of DNA molecules by hydrodynamic focusing. Journal of Fluid Mechanics, 2003, 497, 55–65.

    Article  Google Scholar 

  20. Nonaka A, Gulati S, Trebotich D, Miller G H, Muller S J, Liepmann D. Computational model with experimental validation for DNA flow in microchannels. Nanotech: Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, 2005, 3, 712–715.

    Google Scholar 

  21. Chung Y C, Lin Y C, Hsu Y L, Chang W N T, Shiu M Z. The effect of velocity and extensional strain rate on enhancing DNA hybridization. Journal of Micromechanics and Microengineering, 2004, 14, 1376–1383.

    Article  Google Scholar 

  22. Shapiro E, Drikakis D, Gargiuli J, Vadgama P. Microfluidic cell optimization for polymer membrane fabrication. Proceedings of the 4th ASME International Conference on Nanochannels, Microchannels and Minichannels, Limerick, USA, 2006, ICNMM2006-96221.

  23. Karniadakis G, Beskok A, Aluru N. Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York, 2005.

    MATH  Google Scholar 

  24. Drikakis D, Kalweit M. Coupling strategies for hybrid molecular-continuum simulation methods. Proceedings of the Institution of Mechanical Engineers C, 2008, 222, 797–806.

    Article  Google Scholar 

  25. Gad-el-Hak M. Liquids: The holy grail of microfluidic modelling. Physics of Fluids, 2005, 17, 100612.

    Article  Google Scholar 

  26. Cussler E L. Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  27. Doi M, Edwards S F. The Theory of Polymer Dynamics, Clarendon, Oxford, 1986.

    Google Scholar 

  28. Trebotich D, Miller G H, Colella P, Graves D T, Martin D F, Schwartz P O. A tightly coupled particle-fluid model for DNA-laden flows in complex microscale geometries. Proceedings of Computational Fluid and Solid Mechanics, MIT, USA, 2005, UCRL-CONF-208132.

    Google Scholar 

  29. Goldstein H. Classical Mechanics, Addison-Wesley, USA, 1959.

    MATH  Google Scholar 

  30. Happel J, Brenner H. Low Reynolds Number Hydrodynamics, Martinus Nijhoff Publishers, Hague, 1983.

    MATH  Google Scholar 

  31. Smith S B, Cui Y, Bustamante C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science, 1996, 271, 795–799.

    Article  Google Scholar 

  32. Bustamante C, Smith S B, Liphard J, Smith D. Single-molecule studies of DNA mechanics. Current Opinion in Structural Biology, 2000, 10, 279–285.

    Article  Google Scholar 

  33. Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 1977, 23, 327–341.

    Article  Google Scholar 

  34. Chorin A J. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 1968, 22, 745–762.

    Article  MathSciNet  Google Scholar 

  35. Shapiro E, Drikakis D. Non-conservative and conservative formulations of characteristics-based numerical reconstructions for incompressible flows. International Journal of Numerical Methods for Engineering, 2006, 66, 1466–1482.

    Article  MathSciNet  Google Scholar 

  36. Drikakis D, Rider W. High-Resolution Methods for Incompressible and Low-Speed Flows, Springer-Verlag, Berlin, 2004.

    Google Scholar 

  37. Tothova J, Brutovsky B, Lisy V. Addendum to “Monomer motion in single- and double-stranded DNA coils”. arXiv:cond-mat/0701523v1 [cond-mat.soft], 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Drikakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benke, M., Shapiro, E. & Drikakis, D. An Efficient Multi-Scale Modelling Approach for ssDNA Motion in Fluid Flow. J Bionic Eng 5, 299–307 (2008). https://doi.org/10.1016/S1672-6529(08)60174-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(08)60174-2

Keywords

Navigation