Skip to main content
Log in

Profiling the Steroidogenic Pathway in Human Fetal and Adult Adrenals

  • Original Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

Gene expression clearly underlies the marked structural and functional differences between the human fetal adrenal (HFA) and adult adrenal. We thus measured expression of steroidenic enzymes and associated cofactors in these tissues.

Methods

Real-time reverse transcriptase polymerase chain reaction was used to quantify transcripts encoding steroidogenic enzymes and the cofactors steroidogenic acute regulatory protein (StAR), cytochrome b5 (CYb5), and P450 oxidoreductase (POR).

Results

Cholesterol side-chain cleavage mRNA levels were 1.9-fold higher in the HFA than in the adult adrenal. Compared with a nonsignificant difference in 17α-hydroxylase/17,20 lyase mRNA abundance, CYb5 and POR were expressed 2.3-fold and 2.0-fold higher, respectively, in the HFA. Dehydroepiandrosterone (DHEA) sulfotransferase transcript (SULT2A1) was present at 13-fold higher levels in the HFA than the adult. 3β-Hydroxysteroid dehydrogenase type II (HSD3B2) mRNA was 127-fold higher in the adult adrenal. StAR, 21-hydroxylase, 11β hydroxylase, and aldosterone synthase mRNA abundance did not differ significantly.

Conclusion

In the HFA, increased mRNA for cholesterol side-chain cleavage reflects high cholesterol utilization for steroidogenesis. Both CYb5 and POR cofactors may up-regulate 17α-hydroxylase/17,20 lyase activity and thus DHEA sulfate production in the HFA. High levels of SULT2A1 mRNA reflect high DHEA sulfonation in the HFA and restricted expression in the adult. Lack of HSD3B2 in the HFA facilitates DHEA synthesis. The novel finding of high levels of 21-hydroxylase and 11β hydroxylase transcripts in the midgestational HFA merits further investigation. Thus different patterns of steroidogenic enzyme and cofactor gene expression might account for some of the phenotypic differences between the fetal and adult adrenal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carr BR, Simpson ER. Lipoprotein utilization and cholesterol synthesis by the human fetal adrenal gland. Endocr Rev 1981;2(3):306–326.

    Article  CAS  PubMed  Google Scholar 

  2. McNutt NS, Jones AL. Observations on the ultrastructure of cytodifferentiation in the human fetal adrenal cortex. Lab Invest 1970;22(6):513–527.

    CAS  PubMed  Google Scholar 

  3. Suzuki T, Sasano H, Takeyama J, et al. Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: Immunohistochemical studies. Clin Endocrinol (Oxf) 2000;53(6):739–747.

    Article  CAS  Google Scholar 

  4. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 1994;269(45):28314–28322.

    CAS  PubMed  Google Scholar 

  5. Voutilainen R, Ilvesmaki V, Miettinen PJ. Low expression of 3 beta-hydroxy-5-ene steroid dehydrogenase gene in human fetal adrenals in vivo; adrenocorticotropin and protein kinase C-dependent regulation in adrenocorticol cultures. J Clin Endocrinol Metab 1991;72(4):761–767.

    Article  CAS  PubMed  Google Scholar 

  6. Mesiano S, Coulter CL, Jaffe RB. Localization of cytochrome P450 cholesterol side-chain cleavage, cytochrome P450 17 alpha-hydroxylase/17, 20-lyase, and 3 beta-hydroxysteroid dehydrogenase isomerase steroidogenic enzymes in human and rhesus monkey fetal adrenal glands: Reappraisal of functional zonation. J Clin Endocrinol Metab 1993;77(5):1184–1189.

    CAS  PubMed  Google Scholar 

  7. Parker CR Jr, Falany CN, Stockard CR, Stankovic AK, Grizzle WE. Immunohistochemical localization of dehydroepiandrosterone sulfotransferase in human fetal tissues. J Clin Endocrinol Metab 1994;78(1):234–236.

    CAS  PubMed  Google Scholar 

  8. Barker EV, Hume R, Hallas A, Coughtrie WH. Dehydroepiandrosterone sulfotransferase in the developing human fetus: Quantitative biochemical and immunological characterization of the hepatic, renal, and adrenal enzymes. Endocrinology 1994;134(2):982–989.

    Article  CAS  PubMed  Google Scholar 

  9. Freije WA, Pezzi V, Arici A, Carr BR, Rainey WE. Expression of 11 beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) in the human fetal adrenal. J Soc Gynecol Investig 1997;4(6):305–309.

    Article  CAS  PubMed  Google Scholar 

  10. Narasaka T, Suzuki T, Moriya T, Sasano H. Temporal and spatial distribution of corticosteroidogenic enzymes immunoreactivity in developing human adrenal. Mol Cell Endocrinol 2001;174(1–2):111–120.

    Article  CAS  PubMed  Google Scholar 

  11. Rainey WE, Carr BR, Wang ZN, Parker CR Jr. Gene profiling of human fetal and adult adrenals. J Endocrinol 2001;171(2):209–215.

    Article  CAS  PubMed  Google Scholar 

  12. Wang T, Brown MJ, mRNA quantification by real time TaqMan polymerase chain reaction: Validation and comparison with RNase protection. Anal Biochem 1999;269(1):198–201.

    Article  CAS  PubMed  Google Scholar 

  13. Mills JC, Gordon JI. A new approach for filtering noise from h igh-density oligonucleotide microarray datasets. Nucleic Acids Res 2001;29(15):E72–E72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eickhoff B, Korn B, Shick M, Poustka A, van der Bosch J. Normalization of array hybridization experiments in differential gene expression analysis. Nucleic Acids Res 1999;27(22):E33–E33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Halgren RG, Fielden MR, Fong CJ, Zacharewski TR. Assessment of clone identity and sequence fidelity for 1189 IMAGE cDNA clones. Nucleic Acids Res 2001;29(2):582–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Knight J. When the chips are down. Nature 2001;410(6831):860–861.

    Article  CAS  PubMed  Google Scholar 

  17. Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res 2002;30(10):E48–E48.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bustin SA, Dorudi S. The value of microarray techniques for quantitative gene profiling in molecular diagnostics. Trends Mol Med 2002;8(6):269–272.

    Article  CAS  PubMed  Google Scholar 

  19. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 1979;18(24):5294–5299.

    Article  CAS  PubMed  Google Scholar 

  20. Bradshaw KD, Waterman MR, Couch RT, Simpson ER, Zuber MX. Characterization of complementary deoxyribonucleic acid for human adrenocortical 17 alpha-hydroxylase: a probe for analysis of 17 alpha-hydroxylase deficiency. Mol Endocrinol 1987;1(5):348–354.

    Article  CAS  PubMed  Google Scholar 

  21. White PC, New MI, Dupont B. Structure of human steroid 21-hydroxylase genes. Proc Natl Acad Sci U S A 1986;83(14):5111–5115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. J Biol Chem 1998;273(6):3158–3165.

    Article  CAS  PubMed  Google Scholar 

  23. Rheaume E, Lachance Y, Zhao HF, et al. Structure and expression of a new complementary DNA encoding the almost exclusive 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase in human adrenals and gonads. Mol Endocrinol 1991;5(8):1147–1157.

    Article  CAS  PubMed  Google Scholar 

  24. Lee-Robichaud P, Wright JN, Akhtar ME, Akhtar M. Modulation of the activity of human 17 alpha-hydroxylase-17,20-lyase (CYP17) by cytochrome b5: Endocrinological and mechanistic implications. Biochem J 1995;308(Pt 3):901–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katagiri M, Kagawa N, Waterman MR. The role of cytochrome b5 in the biosynthesis of androgen by human P450c17. Arch Biochem Biophys 1995;317(2):343–347.

    Article  CAS  PubMed  Google Scholar 

  26. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res 1996;6(10):986–994.

    Article  CAS  PubMed  Google Scholar 

  27. Sitteri PK, MacDonald PC. Placental estrogen biosynthesis during human pregnancy. J Clin Endocrinol Metab 1966;26(7):751–761.

    Article  Google Scholar 

  28. Simmer HH, Easterling WE Jr, Pion RJ, Dignam WJ. Neutral C-19-steroids and steroid sulfates in human pregnancy. 1. Identification of dehydroepiandrosterone sulfate in fetal blood and quantification of this hormone in cord arterial, cord venous and maternal peripheral blood in normal pregnancies at term. Steroids 1964;4:125–135.

    Article  CAS  Google Scholar 

  29. Lin D, Black SM, Nagahama Y, Miller WL. Steroid 17 alpha-hydroxylase and 17,20-lyase activities of P450c17: Contributions of serine106 and P450 reductase. Endocrinology 1993;132(6):2498–2506.

    Article  CAS  PubMed  Google Scholar 

  30. Lee-Robichaud P, Akhtar ME, Akhtar M. Lysine mutagenesis identifies cationic charges of human CYP17 that interact with cytochrome b5 to promote male sex-hormone biosynthesis. Biochem J 1999;342(Pt 2):309–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tatusova TA, Madden TL. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 1999;174(2):247–250.

    Article  CAS  PubMed  Google Scholar 

  32. Pruitt KD, Katz KS, Sicotte H, Maglott DR. Introducing RefSeq and LocusLink: Curated human genome resources at the NCBI. Trends Genet 2000;16(1):44–47.

    Article  CAS  PubMed  Google Scholar 

  33. Soucy P, Luu-The V. Assessment of the ability of type 2 cytochrome b5 to modulate 17,20-lyase activity of human P450c17. J Steroid Biochem Mol biol 2002;80(1):71–75.

    Article  CAS  PubMed  Google Scholar 

  34. Longcope C. Adrenal and gonadal androgen secretion in normal females. Clin Endocrinol Metab 1986;15(2):213–228.

    Article  CAS  PubMed  Google Scholar 

  35. Winter JSD. The adrenal cortex in the fetus and the neonate. London: Butterworths, 1985.

    Book  Google Scholar 

  36. Simpson ER, MacDonald PC. Endocrine physiology of the placenta. Annu Rev Physiol 1981;43:163–188.

    Article  CAS  PubMed  Google Scholar 

  37. Meinl W, Glatt H. Structure and localization of the human SULT1B1 gene: Neighborhood to SULT1E1 and a SULT1D pseudogene. Biochem Biophys Res Commun 2001;288(4):855–862.

    Article  CAS  PubMed  Google Scholar 

  38. Doody KM, Carr BR, Rainey WE, et al. 3 beta-hydroxysteroid dehydrogenase/isomerase in the fetal zone and neocortex of the human fetal adrenal gland. Endocrinology 1990;126(5):2487–2492.

    Article  CAS  PubMed  Google Scholar 

  39. Rainey WE, Carr BR, Sasano H, Suzuki T, Mason JI. Disserting human adrenal androgen production. Trends Endocrinol Metab 2002;13(6):234–239.

    Article  CAS  PubMed  Google Scholar 

  40. Endoh A, Kristiansen SB, Casson PR, Buster JE, Hornsby PJ. The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult human adrenal cortex resulting from its low expression of 3 beta-hydroxysteroid dehydrogenase. J Clin Endocrinol Metab 1996;81(10):3558–3565.

    CAS  PubMed  Google Scholar 

  41. Gell JS, Carr BR, Sasano H, et al. Adrenarche results from development of a 3beta-hydroxysteroid dehydrogenase-deficient adrenal reticularis. J Clin Endocrinol Metab 1988;83(10):3695–3701.

    Google Scholar 

  42. Pascoe L, Jeunemaitre X, Lebrethon MC, et al. Glucocorticoidsuppressible hyperaldosteroinism and adrenal tumors occurring in a single French pedigree. J Clin Invest 1995;96(5):2336–2346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Rainey PhD.

Additional information

Dedicated to Yasmin and Layla Rehman. The authors thank Louella Hupp for editorial assistance and Bobbie Mayhew for technical support.

Supported by NIH grant numbers T32 HD07190 and R01 DK043140.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehman, K.S., Carr, B.R. & Rainey, W.E. Profiling the Steroidogenic Pathway in Human Fetal and Adult Adrenals. Reprod. Sci. 10, 372–380 (2003). https://doi.org/10.1016/S1071-5576(03)00118-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-5576(03)00118-7

Key words

Navigation