Skip to main content

Post-transcriptional and Post-translational Regulation of Steroidogenesis

  • Chapter
  • First Online:
Post-transcriptional Mechanisms in Endocrine Regulation

Abstract

Steroid hormones are produced in the adrenal cortex, testis, ovary, placenta and some peripheral tissues such as adipose tissue and brain (neurosteroids). They play important roles in carbohydrate metabolism (glucocorticoids), mineral balance (mineralocorticoids) and reproductive functions (gonadal steroids). Steroids also play a role in several other cellular processes including inflammatory responses, stress responses, bone metabolism, cardiovascular fitness, behavior, cognition and mood. The process of biosynthesis of steroids, termed steroidogenesis is a multistep and multienzyme process which uses cholesterol as the common precursor for the production of all types of steroid hormones. The process can be broadly divided into four major segments: (a) cholesterol acquisition, (b) cholesterol mobilization from lipid droplets, (c) cholesterol transport to and from the mitochondrial outer membrane to the inner membrane for side-chain cleavage to pregnenolone, and (d) efflux of pregnenolone to the endoplasmic reticulum for the tissue specific production of various steroid hormones. Trophic hormones regulate these steps under both acute and chronic conditions. Many tissue specific transcriptional regulators, steroidogenic enzymes, as well as cholesterol transport protein, steroidogenic acute regulatory protein (StAR protein), coordinately regulate steroid hormone production. In recent years accumulating evidence suggests that post-transcriptional and post-translational regulatory events such as phosphorylation/dephosphorylation and protein–protein interactions also contribute significantly to the regulation of steroidogenesis. In addition, emerging evidence suggests the involvement of specific miRNAs in the regulation of both the acute and chronic steroidogenesis. This chapter summarizes the recent advances associated with the post-transcriptional and post-translational regulation of steroid hormone biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACAT1:

Acyl-coenzyme A:cholesterol acyltransferase 1

ACTH:

Adrenocorticotropic hormone

AII:

Angiotensin II

ANC:

Adenine nucleotide transporter

AALO:

Allopregnanolone

CEH:

Neutral cholesteryl ester hydrolase

CE:

Cholesteryl ester

CEs:

Cholesteryl esters

ECD:

Extracellular domain

ER:

Endoplasmic reticulum

FRET:

Quantitative fluorescence resonance energy transfer

FSH:

Follicle-stimulating hormone

hCG:

Human chorionic gonadotropin

HDL:

High-density lipoprotein

HSL:

Hormone-sensitive lipase

IMM:

Inner mitochondrial membrane

LDL:

Low-density lipoprotein

LH:

Luteinizing hormone

OMM:

Outer mitochondrial membrane

NSF:

N-ethylmaleimide-sensitive factor

CYP11A1:

P450c11A

CYP11B1:

P450c11

CYP11B2:

Aldosterone synthase

CYP17:

P450c17

CYP21A2:

P450c21

PBR:

Peripheral-type benzodiazepine receptor

PDZ:

PSD-95, DglA, ZO-1

PKA:

cAMP-dependent protein kinase

SR-BI:

Scavenger receptor Class B, type I

StAR:

Steroidogenic acute regulatory protein

TSPO:

Translocator protein

References

  • Abe M, Bonini N (2013) MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol 23(1):30–36

    CAS  PubMed  Google Scholar 

  • Aghazadeh Y, Rone MB, Blonder J et al (2012) Hormone-induced 14-3-3gamma adaptor protein regulates steroidogenic acute regulatory protein activity and steroid biosynthesis in ma-10 Leydig cells. J Biol Chem 287(19):15380–15394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aghazadeh Y, Ye X, Blonder J et al (2014) Protein modifications regulate the role of 14-3-3gamma adaptor protein in camp-induced steroidogenesis in ma-10 Leydig cells. J Biol Chem 289(38):26542–26553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    CAS  PubMed  Google Scholar 

  • Anthonsen MW, Rönnstrandt L, Wernstedt C et al (1998) Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem 273:215–221

    CAS  PubMed  Google Scholar 

  • Arakane F, King SR, Du Y et al (1997) Phosphorylation of steroidogenic acute regulatory protein (star) modulates its steroidogenic activity. J Biol Chem 272(51):32656–32662

    CAS  PubMed  Google Scholar 

  • Azhar S, Nomoto A, Reaven E (2002) Hormonal regulation of adrenal microvillar channel formation. J Lipid Res 43:861–871

    CAS  PubMed  Google Scholar 

  • Babu P, Baves D, Shah S et al (2000) Role of phosphorylation, gene dosage and dax-1in sf-1-mediated steroidogenesis. Endocr Res 26:985–994

    CAS  PubMed  Google Scholar 

  • Bahler M, Benfenati F, Valtorta F et al (1990) The synapsins and the regulation of synaptic function. Bioessays 12(6):259–263

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) microRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barter D (2009) MicroRNAs: target recognition and regulatory function. Cell 136:215–233

    Google Scholar 

  • Bose H, Whittal R, Ran Y et al (2008) Star-like activity and molten globule behavior of stard6, a male germ-line protein. Biochemistry 47(8):2277–2288

    CAS  PubMed  Google Scholar 

  • Burnett G, Kennedy E (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211:969–980

    CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) Microrna functions. Annu Rev Cell Dev Biol 23:175–205

    CAS  PubMed  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAS. RNA 10(12):1957–1966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chabre O, Libe R, Assie G et al (2013) Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocr Relat Cancer 20(4):579–594

    CAS  PubMed  Google Scholar 

  • Chen W, Cai F, Zhang B et al (2013) The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol 34(1):455–462

    CAS  PubMed  Google Scholar 

  • Ciesla J, Fraczyk T, Rode W (2011) Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochim Pol 58:137–147

    CAS  PubMed  Google Scholar 

  • Clark B, Wells J, King S et al (1994) The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in ma-1o mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (star). J Biol Chem 269:28314–28322

    CAS  PubMed  Google Scholar 

  • Cohen P (2000) The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 25(12):596–601

    CAS  PubMed  Google Scholar 

  • Dai A, Sun H, Fang T et al (2013) microRNA-133b stimulates ovarian estradiol synthesis by targeting FOXl2. FEBS Lett 587(15):2474–2482

    CAS  PubMed  Google Scholar 

  • Desclozeaux M, Kylova I, Horn F et al (2002) Phosphorylation and intramolecular stabilization of ligand binding domain in the steroidogenic factor 1. Mol Cell Biol 22:7193–7203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Leva G, Garofalo M, Croce C (2013) MicroRNAs in cancer. Annu Rev Pathol Mech Dis 9:287–314

    Google Scholar 

  • Du T, Zamore PD (2005) Microprimer: the biogenesis and function of microRNA. Development 132(21):4645–4652

    CAS  PubMed  Google Scholar 

  • Du T, Zamore PD (2007) Beginning to understand microRNA function. Cell Res 17(8):661–663

    CAS  PubMed  Google Scholar 

  • Epstein LF, Orme-Johnson NR (1991a) Acute action of luteinizing hormone on mouse Leydig cells: accumulation of mitochondrial phosphoproteins and stimulation of testosterone synthesis. Mol Cell Endocrinol 81(1–3):113–126

    CAS  PubMed  Google Scholar 

  • Epstein L, Orme-Johnson N (1991b) Regulation of steroid hormone biosynthesis: identification of precursors of a phosphoprotein targeted to the mitochondrion in stimulated rat adrenal cortex cells. J Biol Chem 266:19739–19745

    CAS  PubMed  Google Scholar 

  • Eskildsen TV, Schneider M, Sandberg MB et al (2014) The microRNA-132/212 family fine-tunes multiple targets in angiotensin ii signalling in cardiac fibroblasts. J Renin Angiotensin Aldosterone Syst

    Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132(1):9–14

    CAS  PubMed  Google Scholar 

  • Eyre N, Drummer H, Beard M (2010) The SR-BI partner PDZK1 facilitates hepatitis C virus entry. PLoS Pathog 6:e1001130

    PubMed  PubMed Central  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    CAS  PubMed  Google Scholar 

  • Fatemi N, Sanati MH, Shamsara M et al (2014) TBHP-induced oxidative stress alters microRNAs expression in mouse testis. J Assist Reprod Genet

    Google Scholar 

  • Fenske S, Yesilaltay A, Pal R et al (2009) Normal hepatic cell surface localization of the high density lipoprotein receptor, scavenger receptor class B, type I, depends on all four PDZ domains of PDZK1. J Biol Chem 284:5797–5806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Hernando C, RamĂ­rez C, Goedeke L et al (2013) MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol 33:178–185

    PubMed  PubMed Central  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    CAS  PubMed  Google Scholar 

  • Finnegan EF, Pasquinelli AE (2013) MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol 48(1):51–68

    CAS  PubMed  Google Scholar 

  • Fischer EH, Krebs EG (1966) Relationship of structure to function of muscle phosphorylase. Fed Proc 25:1511–1520

    CAS  PubMed  Google Scholar 

  • Fleury A, Mathieu AP, Ducharme L et al (2004) Phosphorylation and function of the hamster adrenal steroidogenic acute regulatory protein (star). J Steroid Biochem Mol Biol 91(4–5):259–271

    CAS  PubMed  Google Scholar 

  • Flowers E, Froelicher E, Aouizerat B (2013) MicroRNA regulation of lipid metabolism. Metabolism 62(1):12–20

    CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK-H, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–9105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giatti S, Boraso M, Melcangi RC et al (2012) Neuroactive steroids, their metabolites, and neuroinflammation. J Mol Endocrinol 49:R125–R134

    CAS  PubMed  Google Scholar 

  • Gillen AE, Gosalia N, Leir SH et al (2011) MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J 438(1):25–32

    CAS  PubMed  Google Scholar 

  • Greenberg AS, Shen WJ, Muliro K et al (2001) Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem 276(48):45456–45461

    CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241(4861):42–52

    CAS  PubMed  Google Scholar 

  • Hata A (2013) Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol 75:69–93

    CAS  PubMed  Google Scholar 

  • Hu J, Zhang Z, Shen W et al (2010) Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond) 7:47

    PubMed  Google Scholar 

  • Hu J, Zhang Z, Shen W et al (2011) Differential roles of cysteine residues in the cellular trafficking, dimerization, and function of the high-density lipoprotein receptor, SR-BI. Biochemistry 50(50):10860–10875

    CAS  PubMed  Google Scholar 

  • Hu Z, Shen W, Kraemer F et al (2012) microRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol Cell Biol 32(24):5035–5045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Hu J, Zhang Z et al (2013a) Regulation of expression and function of scavenger receptor class B, type I (SR-BI) by na+/h+ exchanger regulatory factors (nherfs). J Biol Chem 288(16):11416–11435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Shen W, Cortez Y et al (2013b) Hormonal regulation of microRNA expression in steroid producing cells of the ovary, testis and adrenal gland. PLoS One 8(10), e78040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikemoto M, Arai H, Feng D et al (2000) Identification of a PDZ-domain-containing protein that interacts with the scavenger receptor class B type I. Proc Natl Acad Sci U S A 97:6538–6543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385

    CAS  PubMed  Google Scholar 

  • Kitahara Y, Nakamura K, Koguru K et al (2013) Role of microRNA-136-3p on the expression of luteinizing hormone-human chorionic gonadotropin receptor mRNA in rat ovaries. Biol Reprod 89:1–10

    Google Scholar 

  • Kocher O, Krieger M (2009) Role of the adaptor protein PDZK1 in controlling the HDL receptor SR-BI. Curr Opin Lipidol 20(3):236–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kocher O, Yesilaltay A, Cirovic C et al (2003) Targeted disruption of the PDZK1 gene in mice causes tissue-specific depletion of the high density lipoprotein receptor scavenger receptor class B type I and altered lipoprotein metabolism. J Biol Chem 278:52820–52825

    CAS  PubMed  Google Scholar 

  • Komori H, Arai H, Kashima T et al (2008) Coexpression of CLA-1 and human PDZK1 in murine liver modulates HDL cholesterol metabolism. Arterioscler Thromb Vasc Biol 28:1298–1303

    CAS  PubMed  Google Scholar 

  • Kotaja N (2014) MicroRNAs and spermatogenesis. Fertil Steril 101(6):1552–1562

    CAS  PubMed  Google Scholar 

  • Kraemer F, Shen W (2002) Hormone-sensitive lipase: control of intracellular tri-(di)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 43:1585–1594

    CAS  PubMed  Google Scholar 

  • Kraemer F, Shen W, Natu V et al (2002) Adrenal neutral cholesteryl hydrolase: identification, subcellular distribution and sex differences. Endocrinology 143:801–806

    CAS  PubMed  Google Scholar 

  • Kraemer FB, Shen WJ, Harada K et al (2004) Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol Endocrinol 18(3):549–557

    CAS  PubMed  Google Scholar 

  • Krebs EG, Fischer EH (1964) Phosphorylase and related enzymes of glycogen metabolism. Vitam Horm 22:399–410

    CAS  PubMed  Google Scholar 

  • Krishnan K, Steptoe AL, Martin HC et al (2013) Microrna-182-5p targets a network of genes involved in DNA repair. RNA 19(2):230–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger R, Orme-Johnson N (1983) Acute adrenocorticotropic hormone stimulation of adrenal corticosteroidogenesis. Discovery of a rapidly induced protein. J Biol Chem 258:10159–10167

    CAS  PubMed  Google Scholar 

  • LaVoie H, King S (2009) Transcriptional regulation of steroidogenic genes: Stard1, cyp11a1 and hsd3b. Exp Biol Med (Maywood) 234:880–907

    CAS  PubMed  Google Scholar 

  • Liu J, Rone MB, Papadopoulos V (2006) Protein–protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J Biol Chem 281(50):38879–38893

    CAS  PubMed  Google Scholar 

  • Maegdefessel L (2014) The emerging role of microRNAs in cardiovascular disease. J Intern Med

    Google Scholar 

  • Manna P, Dyson M, Stocco D (2009) Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspective. Mol Hum Reprod 15:321–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh JM (1976) The role of cyclic AMP in gonadal steroidogenesis. Biol Reprod 14:30–53

    CAS  PubMed  Google Scholar 

  • McIver SC, Roman SD, Nixon B et al (2012) MiRNA and mammalian male germ cells. Hum Reprod Update 18(1):44–59

    CAS  PubMed  Google Scholar 

  • McKenna T, Fearon U, Clarke D et al (1997) A critical review of the origin and control of adrenal androgens. Baillieres Clin Obstet Gynecol 11:229–248

    CAS  Google Scholar 

  • Mellon SH, Griffin D (2002) Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 13:35–43

    CAS  PubMed  Google Scholar 

  • Menon B, Sinden J, Franzo-Romain M et al (2013) Regulation of LH receptor mRNA binding protein by miR-122 in rat ovaries. Endocrinology 154:4826–4834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller WL (1988) Molecular biology of steroid hormone synthesis. Endocr Rev 9(3):295–318

    CAS  PubMed  Google Scholar 

  • Miller W (2002) Androgen biosynthesis from cholesterol to dhea. Mol Cell Endocrinol 198:7–14

    CAS  PubMed  Google Scholar 

  • Miller WL (2007) Star search—what we know about how the steroidogenic acute regulatory protein mediates mitochondrial cholesterol import. Mol Endocrinol 21(3):589–601

    CAS  PubMed  Google Scholar 

  • Miller W (2008) Steroidogenic enzymes. Endocr Dev 13:1–18

    CAS  PubMed  Google Scholar 

  • Miller WL, Bose HS (2011) Early steps in steroidogenesis: intracellular cholesterol trafficking thematic review series: genetics of human lipid diseases. J Lipid Res 52(12):2111–2135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morohaku K, Pelton SH, Daugherty DJ et al (2014) Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. Endocrinology 155(1):89–97

    PubMed  Google Scholar 

  • Nair A, Kash J, Peegel H et al (2002) Post-translational regulation of luteinizing hormone receptor mRNA in the ovary by a novel mRNA-binding protein. J Biol Chem 277:21468–21473

    CAS  PubMed  Google Scholar 

  • O’Connell R, Rao D, Chaudhuri A et al (2010) Physiological and pathological roles for microRNAs in the immature system. Nat Rev Immunol 10:111–122

    PubMed  Google Scholar 

  • O’Connell R, Rao D, Baltimore D (2012) MicroRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312

    PubMed  Google Scholar 

  • Papadopoulos V, Liu J, Culty M (2007) Is there a mitochondrial signaling complex facilitating cholesterol import? Mol Cell Endocrinol 265–266:59–64

    PubMed  Google Scholar 

  • Papaioannou MD, Nef S (2010) MicroRNAs in the testis: building up male fertility. J Androl 31(1):26–33

    CAS  PubMed  Google Scholar 

  • Payne A, Hales D (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25:947–970

    CAS  PubMed  Google Scholar 

  • Payne AH, Youngblood GL, Sha L et al (1992) Hormonal regulation of steroidogenic enzyme gene expression in Leydig cells. J Steroid Biochem Mol Biol 43(8):895–906

    CAS  PubMed  Google Scholar 

  • Pon LA, Orme-Johnson NR (1988) Acute stimulation of corpus luteum cells by gonadotrophin or adenosine 3′,5′-monophosphate causes accumulation of a phosphoprotein concurrent with acceleration of steroid synthesis. Endocrinology 123(4):1942–1948

    CAS  PubMed  Google Scholar 

  • Pon L, Orme-Johnson N (1998) Acute stimulation of corpus luteum cells by gonadotropin or adenosine 3′,5′-monophosphate causes accumulation of a phosphoprotein concurrent with acceleration of steroid synthesis. Endocrinology 123:1942–1948

    Google Scholar 

  • Pon LA, Hartigan JA, Orme-Johnson NR (1986) Acute acth regulation of adrenal corticosteroid biosynthesis. Rapid accumulation of a phosphoprotein. J Biol Chem 261(28):13309–13316

    CAS  PubMed  Google Scholar 

  • Reaven E, Leers-Sucheta S, Nomoto A et al (2001) Expression of scavenger receptor class B type 1 (SR-BI) promotes microvillar channel formation and selective cholesteryl ester transport in a heterologous reconstituted system. Proc Natl Acad Sci U S A 98:1613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reaven E, Cortez Y, Leers-Sucheta S et al (2004) Dimerization of the scavenger receptor class B type I: formation, function, and localization in diverse cells and tissues. J Lipid Res 45(3):513–528

    CAS  PubMed  Google Scholar 

  • Reaven E, Nomoto A, Cortez Y et al (2006) Consequences of over-expression of rat scavenger receptor, SR-BI, in an adrenal cell model. Nutr Metab (Lond) 3:43

    PubMed  Google Scholar 

  • Reddy DS (2010) Neurosteroids: endogenous role in the human brain and therapeutic potential. Prog Brain Res 186:113–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remenyi J, van den Bosch MWM, Palygin O et al (2013) miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity. PLoS One 8, e62509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson S, MacKenzie S, Alvarez-Madrazo S et al (2013) Microrna-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension 62(3):572–578

    CAS  PubMed  Google Scholar 

  • Robichaud J, Francis G, Vance D (2008) A role for hepatic scavenger receptor class B, type I in decreasing high density lipoprotein levels in mice that lack phosphatidylethanolamine n-methyltransferase. J Biol Chem 283:35496–35506

    CAS  PubMed  Google Scholar 

  • Romero DG, Plonczynski MW, Carvajal CA et al (2008) Microribonucleic acid-21 increases aldosterone secretion and proliferation in h295r human adrenocortical cells. Endocrinology 149(5):2477–2483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rone MB, Fan J, Papadopoulos V (2009) Cholesterol transport in steroid biosynthesis: role of protein–protein interactions and implications in disease states. Biochim Biophys Acta 1791(7):646–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rottiers V, Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13(4):239–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sands W, Palmer T (2008) Regulation of gene transcription in response to camp elevation. Cell Signal 20:460–466

    CAS  PubMed  Google Scholar 

  • Sang Q, Yao Z, Wang H et al (2013) Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab 98(7):3068–3079

    CAS  PubMed  Google Scholar 

  • Sanorn B, Heindel J, Robinson G (1980) The role of cyclic nucleotides in the reproductive processes. Ann Rev Physiol 42:37–57

    Google Scholar 

  • Sasaki G, Ishii T, Jeyasuria P et al (2008) Complex role of the mitochondrial targeting signal in the function of steroidogenic acute regulatory protein revealed by bacterial artificial chromosome transgenesis in vivo. Mol Endocrinol 22(4):951–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki G, Zubair M, Ishii T et al (2014) The contribution of serine 194 phosphorylation to steroidogenic acute regulatory protein function. Mol Endocrinol 28(7):1088–1096

    PubMed  PubMed Central  Google Scholar 

  • Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887

    CAS  PubMed  Google Scholar 

  • Schauer SN, Sontakke SD, Watson ED et al (2013) Involvement of miRNAs in equine follicle development. Reproduction 146(3):273–282

    CAS  PubMed  Google Scholar 

  • Schmitz KJ, Helwig J, Bertram S et al (2011) Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours. J Clin Pathol 64(6):529–535

    CAS  PubMed  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    CAS  PubMed  Google Scholar 

  • Shen WJ, Patel S, Natu V et al (1998) Mutational analysis of structural features of rat hormone-sensitive lipase. Biochemistry 37(25):8973–8979

    CAS  PubMed  Google Scholar 

  • Shen WJ, Patel S, Hong R et al (2000) Hormone-sensitive lipase functions as an oligomer. Biochemistry 39(9):2392–2398

    CAS  PubMed  Google Scholar 

  • Shen WJ, Patel S, Natu V et al (2003) Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein: facilitation of cholesterol transfer in adrenal. J Biol Chem 278(44):43870–43876

    CAS  PubMed  Google Scholar 

  • Silver D (2002) A carboxyl-terminal PDZ-interacting domain of scavenger receptor B, type I is essential for cell surface expression in liver. J Biol Chem 277:34042–34047

    CAS  PubMed  Google Scholar 

  • Simpson ER, Waterman MR (1988) Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by acth. Annu Rev Physiol 50:427–440

    CAS  PubMed  Google Scholar 

  • Simpson E, Waternan M (1983) Regulation by acth of steroid hormone biosynthesis in the adrenal cortex. Can J Biochem Cell Biol 61:692–707

    CAS  PubMed  Google Scholar 

  • Simpson E, Lauber M, Demeter M et al (1992) Regulation of expression of the genes encoding steroidogenic enzymes in the ovary. J Steroid Biochem Mol Biol 41(3–8):409–413

    CAS  PubMed  Google Scholar 

  • Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38(3):323–332

    CAS  PubMed  Google Scholar 

  • Sirotkin AV, Ovcharenko D, Grossmann R et al (2009) Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol 219(2):415–420

    CAS  PubMed  Google Scholar 

  • Spat A, Hunyady L (2004) Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 84:489–539

    CAS  PubMed  Google Scholar 

  • Sree S, Radhakrishnan K, Indu S et al (2014) Dramatic changes in 67 microRNAs during initiation of first wave of spermatogenesis in mus musculus testis: global regulatory insights generated by microRNA-mrna network analysis. Biol Reprod

    Google Scholar 

  • Stocco DM (2001) Star protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 63(1):193–213

    CAS  PubMed  Google Scholar 

  • Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17(3):221–244

    CAS  PubMed  Google Scholar 

  • Strauss J, Golos T, Silavin S et al (1988) Involvement of cyclic amp in the functions of granulosa and luteal cells: regulation of steroidogenesis. Prog Clin Biol Res 267:177–200

    CAS  PubMed  Google Scholar 

  • Strauss JF III, Martinezm F, Kiriakidu M (1996) Placental steroid hormone synthesis: unique features and unanswered questions. Biol Reprod 54:303–311

    CAS  PubMed  Google Scholar 

  • Syring I, Bartels J, Holdenrieder S et al (2014) Circulating serum microRNA (miR-367-3p, miR-371a-3p, miR-372-3p, miR-373-3p) as biomarkers for patients with testicular germ cell cancers. J Urol

    Google Scholar 

  • Szabo G, Bala S (2013) MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10(9):542–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takemori H, Okamoto M (2008) Regulation of CREB-mediated gene expression by salt inducible kinase. J Steroid Biochem Mol Biol 108:287–291

    CAS  PubMed  Google Scholar 

  • Troppmann B, Kossack N, Nordhoff V et al (2014) MicroRNA miR-513a-3p acts as a co-regulator of luteinizing hormone/chorionic gonadotropin receptor gene expression in human granulosa cells. Mol Cell Endocrinol 390(1–2):65–72

    CAS  PubMed  Google Scholar 

  • Tu LN, Morohaku K, Manna PR et al (2014) Peripheral benzodiazepine receptor/translocator protein global knockout mice are viable with no effects on steroid hormone biosynthesis. J Biol Chem

    Google Scholar 

  • Velazquez-Fernandez D, Caramuta S, Ozata DM et al (2014) Microrna expression patterns associated with hyperfunctioning and non-hyperfunctioning phenotypes in adrenocortical adenomas. Eur J Endocrinol 170(4):583–591

    CAS  PubMed  Google Scholar 

  • Venkataraman S, Birks DK, Balakrishnan I et al (2013) MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. J Biol Chem 288(3):1918–1928

    CAS  PubMed  Google Scholar 

  • Vilgrain I, Defraye G, Ghambaz E (1984) Adrenocortical cytochrome p-450 responsible for cholesterol side chain cleavage (p-450scc) is phosphorylated by the calcium activated, phospholipid-sensitive protein kinase (protein kinase c). Biochem Biophys Res Commun 125:554–561

    CAS  PubMed  Google Scholar 

  • Wanet A, Tacheny A, Arnould T et al (2012) miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 40(11):4742–4753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Jia X-J, Jiang H-J et al (2013a) MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol 33:1956–1964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YY, Ye ZY, Zhao ZS et al (2013b) Clinicopathologic significance of miR-10b expression in gastric carcinoma. Hum Pathol 44(7):1278–1285

    CAS  PubMed  Google Scholar 

  • Wood S, Emmison N, Borthwick A et al (1993) The protein phosphatases responsible for dephosphorylation of hormone-sensitive lipase in isolated rat adipocytes. Biochem J 295:531–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Linher-Melville K, Yang B et al (2011) Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 152(10):3941–3951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan G, Zhang L, Fang T et al (2012) MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor iB. FEBS Lett 586(19):3263–3270

    CAS  PubMed  Google Scholar 

  • Yang S, Wang S, Luo A et al (2013) Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod 89(5):126

    CAS  PubMed  Google Scholar 

  • Yao G, Yin M, Lian J et al (2010) Microrna-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 24(3):540–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeaman S (1990) Hormone-sensitive lipase–a multipurpose enzyme in lipid metabolism. Biochim Biophys Acta 1052:128–132

    CAS  PubMed  Google Scholar 

  • Yi R, Fuchs E (2011) MicroRNAs and their roles in mammalian stem cells. J Cell Sci 124(Pt 11):1775–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin M, Lu M, Yao G et al (2012) Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol 26(7):1129–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin M, Wang X, Yao G et al (2014) Transactivation of microRNA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem 289(26):18239–18257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuhanna I, Shaul P, Mineo C (2008) The scavenger receptor class B type I adaptor protein PDZK1 maintains endothelial monolayer integrity. Circ Res 102(480–487)

    Google Scholar 

  • Zhang Q, Sun H, Jiang Y et al (2013) MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS One 8(3), e59667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Saddar S, Seetharam D et al (2008) The scavenger receptor class B type I adaptor protein PDZK1 maintains endothelial monolayer integrity. Circ Res 102:480–487

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health, NHLBI, Grant 2R01HL33881 and by the Office of Research and Development, Medical Service, Department of Veterans Affairs.

The authors are thankful to Mr. Kris Morrow, Medical Media, VA Palo Alto Health Care System for his assistance in the preparation of graphic illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Azhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shen, WJ., Hu, Z., Hu, J., Kraemer, F.B., Azhar, S. (2016). Post-transcriptional and Post-translational Regulation of Steroidogenesis. In: Menon, PhD, K., Goldstrohm, PhD, A. (eds) Post-transcriptional Mechanisms in Endocrine Regulation. Springer, Cham. https://doi.org/10.1007/978-3-319-25124-0_12

Download citation

Publish with us

Policies and ethics