Skip to main content
Log in

Assessment of the right ventricle with radionuclide techniques

  • Review Articles
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

The right ventricle has a prominent role in determining overall cardiac function. Thus an accurate measurement of right ventricular (RV) function is important. Radionuclide angiography has advanced our ability to measure RV function. In this way, it has furthered our understanding of the pathophysiology of disease states involving the right ventricle. This article reviews the current methods of measuring RV function by radionuclide angiography. The physiology of normal RV function is discussed. Then several common disease states in which RV dysfunction is prominent are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maddahi J, Berman DS, Matsuoka DT, et al. A new technique for assessing right ventricular ejection fraction using rapid multiplegated equilibrium cardiac blood pool scintigraphy. Circulation 1979;60:581–9.

    PubMed  CAS  Google Scholar 

  2. Morrison D, Marshall J, Wright AI, Kaly M, Henry R. An improved method of right ventricular gated equilibrium blood pool radionuclide ventriculography. Chest 1982;82:607–14.

    Article  PubMed  CAS  Google Scholar 

  3. Morrison DA, Turgeon J, Kotler J, Henry R. Gated first pass radionuclide ventriculography: methods, validation, and applications. Clin Nucl Med 1984;9:506–11.

    Article  PubMed  CAS  Google Scholar 

  4. Harolds JA, Bowen RD, Powers TA. Right-ventricular function as assessed by two radionuclide techniques: concise communication. J Nucl Med 1981;22:113–5.

    PubMed  CAS  Google Scholar 

  5. Berger HJ, Matthay RA, Loke J, Marshall RC, Gottschalk A, Zaret BL. Assessment of cardiac performance with quantitative radionuclide angiocardiography: right ventricular ejection fraction with reference to findings in chronic obstructive pulmonary disease. Am J Cardiol 1978;41:897–905.

    Article  PubMed  CAS  Google Scholar 

  6. Rezai K, Weiss, R, Stanford W, Preslar J, Marcus M, Kirchner P. Relative accuracy of three scintigraphic methods for determination of right ventricular ejection fraction: a correlative study with ultrafast computed tomography. J Nucl Med 1991;32:429–35.

    PubMed  CAS  Google Scholar 

  7. Rohnson LL, Lawson MA, Blackwell GG, Tauxe EL, Russell K, Dell'Italia LJ. Optimizing the method to calculate right ventricular ejection fraction from first-pass data acquired with a multicrystal camera. J Nucl Cardiol 1995;2:372–9.

    Article  Google Scholar 

  8. DePuey EG, Jones ME, Garcia EV. Evaluation of right ventricular regional perfusion with technetium-99m-sestamibi SPECT. J Nucl Med 1991;32:1199–205.

    PubMed  CAS  Google Scholar 

  9. Dehmer GJ, Firth BG, Hillis LD, Nicod P, Willerson JT, Lewis SE. Nongeometric determination of right ventricular volumes from equilibrium blood pool scans. Am J Cardiol 1982;49:78–84.

    Article  PubMed  CAS  Google Scholar 

  10. Dell'Italia LJ, Starling MR, Walsh RA, Badke FR, Lasher JC, Blumhardt R. Validation of attenuation-corrected equilibrium radionuclide angiographic determinations of right ventricular volume: comparison with cast-validated biplane cineventriculography. Circulation 1985;72:317–26.

    PubMed  Google Scholar 

  11. Brown KA, Ditchey RV. Human right ventricular end-systolic pressure-volume relation defined by maximal elastance. Circulation 1988;78:81–91.

    PubMed  CAS  Google Scholar 

  12. Pouleur H, Lefevre J, Bechelen HV, Charlier AA. Free-wall shortening and relaxation during ejection in the canine right ventricle. Am J Physiol 1980;239:H601–13.

    PubMed  CAS  Google Scholar 

  13. Maughan WL, Shoukas AA, Sagawa K, Weisfeldt ML. Instantaneous pressure-volume relationship of the canine right ventricle. Circ Res 1979;44:309–15.

    PubMed  CAS  Google Scholar 

  14. Dell'Italia LJ, Walsh RA. Right ventricular diastolic pressure-volume relations and regional dimensions during acute alterations in loading conditions. Circulation 1988;77:1276–82.

    PubMed  Google Scholar 

  15. Starr I, Jeffers WA, Meade RH Jr. The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease. Am Heart J 1943;26:291–302.

    Article  Google Scholar 

  16. Weber K, Janicki J, Shroff S, et al. The right ventricle: physiologic and pathophysiologic considerations. Crit Care Med 1983;11:323–8.

    Article  PubMed  CAS  Google Scholar 

  17. Spann JF, Covell JW, Eckbert DL, Sonnenblick EH, Ross J Jr, Braunwald E. Contractile performance of the hypertrophied and chronically failing cat ventricle. Am J Physiol 1972;223:1150–7.

    PubMed  Google Scholar 

  18. Urabe Y, Tomoike H, Ohzono K, Koyanagi S, Nakamura M. Role of afterload in determining regional right ventricular performance during coronary underperfusion in dogs. Circ Res 1985;57:96–104.

    PubMed  CAS  Google Scholar 

  19. Akasaka T, Yoshikawa J, Hozumi T, Takagi T, Okura H. Phasic coronary flow velocity pattern of the right coronary artery in patients with pulmonary hypertension. Circulation 1995;92:SI-325.

    Google Scholar 

  20. Vlahakes GJ, Turley K, Hoffman JIE. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 1981;63:87–94.

    PubMed  CAS  Google Scholar 

  21. Schulman DS, Biondi JW, Matthay RA, Barash PG, Zaret BL, Soufer R. Effect of positive end-expiratory pressure on right ventricular performance: importance of baseline right ventricular function. Am J Med 1988;84:57–67.

    Article  PubMed  CAS  Google Scholar 

  22. Schulman DS, Biondi JW, Zohgbi S, Zaret BL, Soufer R. Coronary flow limits right ventricular performance during positive end-expiratory pressure. Am Rev Respir Dis 1990;141:1531–7.

    PubMed  CAS  Google Scholar 

  23. Bove AA, Santamore WP. Ventricular interdependence. Prog Cardiovasc Dis 1981;23:365–88.

    Article  PubMed  CAS  Google Scholar 

  24. Schulman DS, Biondi JW, Matthay RA, Barash PG, Zaret BL, Soufer R. Differing responses in ventricular filling, loading and volumes during positive end-expiratory pressure. Am J Cardiol 1989;64:772–7.

    Article  PubMed  CAS  Google Scholar 

  25. Santamore WP, Constantinescu M, Vinten-Johansen J, Johnston WE, Little WC. Alterations in left ventricular compliance due to changes in right ventricular volume, pressure and compliance. Cardiovasc Res 1988;22:768–76.

    Article  PubMed  CAS  Google Scholar 

  26. Brinker JA, Weiss JL, Lappe DL, et al. Leftward septal displacement during right ventricular loading in man. Circulation 1980; 61:626–33.

    PubMed  CAS  Google Scholar 

  27. Schulman DS, Biondi JW, Zohgbi S, Zaret BL, Soufer R. Left ventricular diastolic function during positive end-expiratory pressure: impact of right ventricular ischemia. Am Rev Respir Dis 1992;145:515–21.

    PubMed  CAS  Google Scholar 

  28. Santamore WP, Lynch PR, Heckman JL, Bove AA, Meier GD. Left ventricular effects on right ventricular developed pressure. J Appl Physiol 1976;41:925–30.

    PubMed  CAS  Google Scholar 

  29. Woodward JC, Chow E, Farrar DJ. Isolated ventricular systolic interaction during transient reductions in left ventricular pressure. Circ Res 1992;70:944–51.

    Google Scholar 

  30. Feneley MP, Gavaghan TP, Baron DW, et al. Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation 1985;71:473–80.

    PubMed  CAS  Google Scholar 

  31. Damiano RJ Jr, La Follette P Jr, Cox JL, et al. Significant left ventricular contribution to right ventricular systolic function. Am J Physiol 1991;261:1514–24.

    Google Scholar 

  32. Moser KM, Peterson K, Dembitsky W, et al. Thromboendarterectomy for chronic, major-vessel thromboembolic pulmonary hypertension. Ann Intern Med 1987;107:560–5.

    PubMed  CAS  Google Scholar 

  33. Pasque MK, Trulock EP, Kaiser LR, Cooper JD. Single-lung transplantation for pulmonary hypertension: three-month hemodynamic follow-up. Circulation 1991;84:2275–9.

    PubMed  CAS  Google Scholar 

  34. Brent BN, Berger HJ, Matthay RA, Mahler D, Pytlik L, Zaret BL. Physiologic correlates of right ventricular ejection fraction in chronic obstructive pulmonary disease: a combined radionuclide and hemodynamic study. Am J Cardiol 1982;50:255–62.

    Article  PubMed  CAS  Google Scholar 

  35. Matthay RA, Berger HJ, Davies RA, et al. Right and left ventricular exercise performance in chronic obstructive pulmonary disease: radionuclide Assessment. Ann Intern Med 1980;93: 234–9.

    PubMed  CAS  Google Scholar 

  36. Mahler DA, Brent BN, Loke J, Zaret BL, Matthay RA. Right ventricular performance and central circulatory hemodynamics during upright exercise in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1984;130:722–9.

    PubMed  CAS  Google Scholar 

  37. Lazar JM, Flores AR, Grandis DG, Orie JE, Schulman DS. Effects of chronic right ventricular pressure overload on left ventricular diastolic function. Am J Cardiol 1993;72:1179–82.

    Article  PubMed  CAS  Google Scholar 

  38. McIntyre K, Sasahara A. The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am J Cardiol 1971;28:288–94.

    Article  PubMed  CAS  Google Scholar 

  39. McIntyre K, Sasahara A. Determinants of right ventricular function and hemodynamics after pulmonary embolism. Chest 1974; 65:534–43.

    Article  PubMed  CAS  Google Scholar 

  40. Jardin F, Dubourg O, Gueret P, Delorme G, Bourdarias JP. Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol 1987;10: 1201–6.

    PubMed  CAS  Google Scholar 

  41. Molloy WD, Lee KY, Schick GU, Prewitt RM. Treatment of shock in a canine model of pulmonary embolism. Am Rev Respir Dis 1984;129:135–42.

    Google Scholar 

  42. Belenkie I, Dani R, Smith ER, Tyberg JV. Ventricular interaction during experimental pulmonary embolism. Circulation 1988;78: 761–8.

    PubMed  CAS  Google Scholar 

  43. Belenkie I, Dani R, Smith ER, Tyberg JV. Effects of volume loading during experimental acute pulmonary embolism. Circulation 1989;80:178–88.

    PubMed  CAS  Google Scholar 

  44. Come PC, Ducksoo K, Parker JA, goldhaber SZ, Braunwald E, Markis JE. Early reversal of right ventricular dysfunction in patients with acute pulmonary embolism after treatment with intravenous tissue plasminogen activator. J Am Coll Cardiol 1987;10:971–8.

    Article  PubMed  CAS  Google Scholar 

  45. Lorell B, Leinbach RC, Pohost GM, et al. Right ventricular infarction: clinical diagnosis and differentiation from cardiac tamponade and pericardial constriction. Am J Cardiol 1979;43: 465–71.

    Article  PubMed  CAS  Google Scholar 

  46. Reduto LA, Berger HJ, Cohen LS, Gottschalk A, Zaret BL. Sequential radionuclide assessment of left and right ventricular performance after acute transmural myocardial infarction. Ann Intern Med 1978;89:441–7.

    PubMed  CAS  Google Scholar 

  47. Sharpe DN, Botvinick EH, Shames DM, et al. The noninvasive diagnosis of right ventricular infarction. Circulation 1977;57:483–90.

    Google Scholar 

  48. Steele P, Kirch D, Ellis J, Vogel R, Battock D. Prompt return to normal of depressed right ventricular ejection fraction in acute inferior infarction. Br Heart J 1977;39:1319–23.

    Article  PubMed  CAS  Google Scholar 

  49. Braat SH, Brugada P, De Zwaan C, Den Dulk K, Wellens HJJ. Right and left ventricular ejection fraction in acute inferior wall infarction with or without ST segment elevation in lead V4R. J Am Coll Cardiol 1984;4:940–4.

    PubMed  CAS  Google Scholar 

  50. Shah PK, Maddahi J, Berman DS, Pichler M, Swan HJC. Scintigraphically detected predominant right ventricular dysfunction in acute myocardial infarction: clinical and hemodynamic correlates and implications for therapy and prognosis. J Am Coll Cardiol 1985;6:1264–72.

    Article  PubMed  CAS  Google Scholar 

  51. Starling MR, Dell'Italia LJ, Chudhuri TK, Boros BL, O'Rourke RA. First transit and equilibrium radionuclide angiography in patients with inferior myocardial infarction: criteria for the diagnosis of associated hemodynamically significant right ventricular infarction. J Am Coll Cardiol 1984;4:923–30.

    PubMed  CAS  Google Scholar 

  52. Dell'Italia LJ, Starling MR, Crawford MH, Boros BL, Chaudhuri TK, O'Rourke RA. Right ventricular infarction: identification by hemodynamic measurements before and after volume loading and correlation with noninvasive techniques. J Am Coll Cardiol 1984; 4:931–9.

    PubMed  Google Scholar 

  53. Laster SB, Ohnishi KY, Saffitz JE, Goldstein JA. Effects of reperfusion on ischemic right ventricular dysfunction: disparate mechanisms of benefit related to duration of ischemia. Circulation 1994;90:1398–409.

    PubMed  CAS  Google Scholar 

  54. Verani MS, Tortoledo PE, Batty JW, Raizner AE. Effect of coronary artery recanalization on right ventricular function in patients with acute myocardial infarction. J Am Coll Cardiol 1985;5:1029–35.

    PubMed  CAS  Google Scholar 

  55. Schuler G, Hofmann M, Schwarz F, et al. Effect of successful thrombolytic therapy on right ventricular function in acute inferior wall myocardial infarction. Am J Cardiol 1984;54:951–7.

    Article  PubMed  CAS  Google Scholar 

  56. Berger PB, Ruocco NA, Ryan TJ, et al. Frequency and significance of right ventricular dysfunction during inferior wall left ventricular myocardial infarction treated with thrombolytic therapy (results from the Thrombolysis in Myocardial Infarction [TIMI] II Trial). Am J Cardiol 1993;71:1148–52.

    Article  PubMed  CAS  Google Scholar 

  57. Goto Y, Yamamoto J, Saito M, et al. Effects of right ventricular ischemia on left ventricular geometry and the end-diastolic pressure-volume relationship in the dog. Circulation 1985;72:1104–14.

    PubMed  CAS  Google Scholar 

  58. Goldstein JA, Vlahakes GJ, Berrier ED, et al. The role of right ventricular systolic dysfunction and elevated intrapericardial pressure in the genesis of low output in experimental right ventricular infarction. Circulation 1982;65:513–22.

    PubMed  CAS  Google Scholar 

  59. Goldstein JA, Tweddell JS, Barzilai B, Yagi Y, Jaffe AS. Right atrial ischemia exacerbates hemodynamic compromise associated with experimental right ventricular dysfunction. J Am Coll Cardiol 1991;18:1564–72.

    PubMed  CAS  Google Scholar 

  60. Goldstein JA, Tweddell JS, Barzilai B, Yagi Y, Jaffe AS, Cox JL. Importance of left ventricular function and systolic ventricular interaction to right ventricular performance during acute right heart ischemia. J Am Coll Cardiol 1992;19:704–11.

    Article  PubMed  CAS  Google Scholar 

  61. Goldstein JA, Barzilai B, Rosamond TL, Eisenberg PR, Jaffe AS. Determinants of hemodynamic compromise with severe right ventricular infarction. Circulation 1990;82:359–68.

    PubMed  CAS  Google Scholar 

  62. Dell'Italia LJ, Starling MR, Blumhardt R, Lasher JC, O'Rourke RA. Comparative effects of volume loading, dobutamine, and nitroprusside in patients with predominant right ventricular infarction. Circulation 1985;72:1327–35.

    PubMed  Google Scholar 

  63. Steele P, Kirch D, LeFree M, Battock D. Measurement of right and left ventricular ejection fractions by radionuclide angiocardiography in coronary artery disease. Chest 1976;70:51–6.

    Article  PubMed  CAS  Google Scholar 

  64. Morrsion D, Sorensen S, Caldwell J, et al. The normal right ventricular response to supine exercise. Chest 1982;82:686–91.

    Article  Google Scholar 

  65. Berger HJ, Johnstone DE, Sands JM, Gottschalk A, Zaret BL. Response of right ventricular ejection fraction to upright bicycle exercise in coronary artery disease. Circulation 1979;60:1292–9.

    PubMed  CAS  Google Scholar 

  66. Johnson LL, McCarthy DM, Sciacca RR, Cannon PJ. Right ventricular ejection fraction during exercise in patients with coronary artery disease. Circulation 1979;60:1284–91.

    PubMed  CAS  Google Scholar 

  67. Neglia D, Paroki O, Marzullo P, et al. Behavior of right and left ventricles during episodes of variant angina in relation to the site of coronary vasospasm. Circulation 1990;81:567–77.

    PubMed  CAS  Google Scholar 

  68. Verani MS, Guidry GW, Mahmarian JJ, et al. Effects of acute, transient coronary occlusion on global and regional right ventricular function in humans. J Am Coll Cardiol 1992;20:1490–7.

    PubMed  CAS  Google Scholar 

  69. Lewis JF, Webber JD, Sutton LL, Chesoni S, Curry CL. Discordance in degree of right and left ventricular dilation in patients with dilated cardiomyopathy: recognition and clinical implications. J Am Coll Cardiol 1993;21:649–54.

    Article  PubMed  CAS  Google Scholar 

  70. Schulman DS, Grandis DJ, Flores AR. Relationship between hemodynamics and right ventricular function in patients with cardiomyopathy: important role of tricuspid regurgitation. Chest 1995;107:14–9.

    Article  PubMed  CAS  Google Scholar 

  71. Kimichi A, Ellrodt G, Berman DS, Riedinger MS, Swan HJC, Murata GH. Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol 1984;??:945–51.

    Google Scholar 

  72. Parker MM, McCarthy KE, Ognibene FP, Parrillo JE. Right ventricular dysfunction and dilation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 1990;97:126–31.

    Article  PubMed  CAS  Google Scholar 

  73. Iskandrian AS, Hakki A, Ren J, et al. Correlation among right ventricular preload, afterload and ejection fraction in mitral valve disease: radionuclide, echo-cardiographic and hemodynamic evaluation. J Am Coll Cardiol 1984;3:1403–11.

    PubMed  CAS  Google Scholar 

  74. Konstam MA, Idoine J, Wynne J, et al. Right ventricular function in adults with pulmonary hypertension with and without atrial septal defect. Am J Cardiol 1983;51:1144–8.

    Article  PubMed  CAS  Google Scholar 

  75. Hung J, Uren RF, Richmond DR, Kelly DT. The mechanism of abnormal septal motion in atrial septal defect: pre- and postoperative study by radionuclide ventriculography in adults. Circulation 1981;63:142–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulman, D.S. Assessment of the right ventricle with radionuclide techniques. J Nucl Cardiol 3, 253–264 (1996). https://doi.org/10.1016/S1071-3581(96)90039-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(96)90039-2

Key Words

Navigation