Skip to main content

The Imaging of Right Ventricular Dysfunction in Heart Failure

  • Chapter
  • First Online:
Current Approach to Heart Failure

Abstract

In patients with heart failure, right ventricular (RV) function is an independent predictor of cardiovascular morbidity and mortality. However, non-invasive assessment of the RV is a challenging task due to its complex anatomy and location in the chest.Moreover, the high load dependency of RV function can also lead to inaccurate or misleading interpretation of intrinsic RV function parameters if they are taken in isolation form RV pre- and afterload conditions. No single imaging modality is able to provide a comprehensive assessment of RV global and regional functions, mechanics, shape and tissue structure. Accordingly, a multimodality and multiparameteric approach is recommended.

The following chapter summarizes currently available data on the role of non-invasive imaging techniques in the assessment of RV performance, their advantages, limitations and pitfalls in heart failure patients, with an emphasis on the relative merits of newer imaging parameters and practical approach to data acquisition and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CMR:

Cardiac magnetic resonance

CT:

Computed tomography

EDA:

End-diastolic area

EDV:

End-diastolic volume

EF:

Ejection fraction

ESA:

End-systolic area

ESV:

End-systolic volume

ET:

Ejection time

FAC:

Fractional area change

IVCT:

Isovolumic contraction time

IVRT:

Isovolumic relaxation time

IVS:

Interventricular septum

LV:

Left ventricle

RIMP:

Right ventricular myocardial performance index

RV:

Right ventricle/ventricular

RVOT:

Right ventricular outflow tract

S:

Systolic velocity across lateral segment of tricuspid annulus by tissue Doppler imaging

SPECT:

Single photon emission computed tomography

SSFP:

Steady-state free precession sequence

TAPSE:

Tricuspid annular plane systolic excursion

TDI:

Tissue Doppler imaging

TEE:

Transesophageal echocardiography

2D:

Two-dimensional

2DE:

Two-dimensional echocardiography

2DSTE:

Two-dimensional speckle-tracking echocardiography

3D:

Three-dimensional

3DE:

Three-dimensional echocardiography

References

  1. Davlouros PA, Niwa K, Webb G, Gatzoulis MA. The right ventricle in congenital heart disease. Heart. 2006;92(Suppl 1):i27–38.

    PubMed  Google Scholar 

  2. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31.

    Article  PubMed  Google Scholar 

  3. Murninkas D, Alba AC, Delgado D, McDonald M, Billia F, Chan WS, et al. Right ventricular function and prognosis in stable heart failure patients. J Card Fail. 20(5):343–9.

    Google Scholar 

  4. Buechel ERV, Mertens LL. Imaging the right heart: the use of integrated multimodality imaging. Eur Heart J. 2012;33(8):949–60.

    Article  Google Scholar 

  5. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and t. J Am Soc Echocardiogr [Internet]. Elsevier Inc; 2010;23(7):685–713; quiz 786–8. Available from: http://dx.doi.org/10.1016/j.echo.2010.05.010.

    Google Scholar 

  6. Tan CO, Harley I. Perioperative transesophageal echocardiographic assessment of the right heart and associated structures: a comprehensive update and technical report. J Cardiothorac Vasc Anesth. 2014;28(4):1112–33.

    Article  Google Scholar 

  7. Hahn RT, Abraham T, Adams MS, Bruce CJ, Glas KE, Lang RM, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Anesth Analg. 2014;118(1):21–68.

    Article  PubMed  Google Scholar 

  8. Larose E, Ganz P, Reynolds HG, Dorbala S, Di Carli MF, Brown KA, et al. Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol. 49(8):855–62.

    Google Scholar 

  9. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic functionand pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 37(1):183–8.

    Google Scholar 

  10. LangRM, BadanoLP, Mor-AviV, AfilaloJ, ArmstrongA, ErnandeL, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr [Internet]. Elsevier Inc; 2015;28(1):1–39.e14. Available from: http://dx.doi.org/10.1016/j.echo.2014.10.003.

  11. Focardi M, Cameli M, Carbone SF, Massoni A, De Vito R, Lisi M, et al. Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging. 2015;16(1):47–52.

    Article  PubMed  Google Scholar 

  12. Anderson K, Prylutska H, Ducharme A, Finnerty V, Gregoire J, Marcotte F, et al. Evaluation of the right ventricle: comparison of gated blood-pool single photon electron computed tomography and echocardiography with cardiac magnetic resonance. Int J Cardiol. 2014;171(1):1–8.

    Article  PubMed  Google Scholar 

  13. Anavekar NS, Gerson D, Skali H, Kwong RY, Yucel EK, Solomon SD. Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study. Echocardiography. 24(5):452–6.

    Google Scholar 

  14. Zornoff LAM, Skali H, Pfeffer MA, St John Sutton M, Rouleau JL, Lamas GA, et al. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol. 39(9):1450–5.

    Google Scholar 

  15. Anavekar NS, Skali H, Bourgoun M, Ghali JK, Kober L, Maggioni AP, et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO Study). Am J Cardiol. 101(5):607–12.

    Google Scholar 

  16. Schmid E, Hilberath JN, Blumenstock G, Shekar PS, Kling S, Shernan SK, et al. Tricuspid annular plane systolic excursion (TAPSE) predicts poor outcome in patients undergoing acute pulmonary embolectomy. HeartLung Vessel. 2015;7(2):151–8.

    Google Scholar 

  17. Li Y, Wang Y, Zhai Z, Guo X, Wu Y, Yang Y, et al. Relationship between echocardiographic and cardiac magnetic resonance imaging-derived measures of right ventricular function in patients with chronic thromboembolic pulmonary hypertension. Thromb Res. 135(4):602–6.

    Google Scholar 

  18. Giusca S, Dambrauskaite V, Scheurwegs C, D’hooge J, Claus P, Herbots L, et al. Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring. Heart. 96(4):281–8.

    Google Scholar 

  19. Karnati PK, El-Hajjar M, Torosoff M, Fein SA. Myocardial performance index correlates with right ventricular ejection fractionmeasured by nuclear ventriculography. Echocardiography. 25(4):381–5.

    Google Scholar 

  20. Salehian O, Schwerzmann M, Merchant N, Webb GD, Siu SC, Therrien J. Assessment of systemic right ventricular function in patients with transpositionof the great arteries using the myocardial performance index: comparison with cardiac magnetic resonance imaging. Circulation. 110(20):3229–33.

    Google Scholar 

  21. Gondi S, Dokainish H. Right ventricular tissue Doppler and strain imaging: ready for clinical use? Echocardiography. 24(5):522–32.

    Google Scholar 

  22. Harada K, Tamura M, Toyono M, Yasuoka K. Comparison of the right ventricular Tei index by tissue Doppler imaging to that obtained by pulsed Doppler in children without heart disease. Am J Cardiol. 90(5):566–9.

    Google Scholar 

  23. Wang J, Prakasa K, Bomma C, Tandri H, Dalal D, James C, et al. Comparison of novel echocardiographic parameters of right ventricular function with ejection fraction by cardiac magnetic resonance. J Am Soc Echocardiogr. 20(9):1058–64.

    Google Scholar 

  24. Sade LE, Gulmez O, Ozyer U, Ozgul E, Agildere M, Muderrisoglu H. Tissue Doppler study of the right ventricle with a multisegmental approach: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 22(4):361–8.

    Google Scholar 

  25. Meluzin J, Spinarova L, Bakala J, Toman J, Krejci J, Hude P, et al. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J. 22(4):340–8.

    Google Scholar 

  26. Niemann PS, Pinho L, Balbach T, Galuschky C, Blankenhagen M, Silberbach M, et al. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol. 50(17):1668–76.

    Google Scholar 

  27. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, et al. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging. 2010;3(1):10–8.

    Article  PubMed  Google Scholar 

  28. Zhang QB, Sun JP, Gao RF, Lee AP-W, Feng YL, Liu XR, et al. Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography for quantification of right ventricular volume: validation by cardiac magnetic resonance imaging. Int J Cardiol. 168(4):3991–5.

    Google Scholar 

  29. Lu X, Nadvoretskiy V, Bu L, Stolpen A, Ayres N, Pignatelli RH, et al. Accuracy and reproducibility of real-time three-dimensional echocardiography forassessment of right ventricular volumes and ejection fraction in children. J Am Soc Echocardiogr. 21(1):84–9.

    Google Scholar 

  30. Pickett CA, Cheezum MK, Kassop D, Villines TC, Hulten EA. Accuracy of cardiac CT, radionucleotide and invasive ventriculography, two- and three-dimensional echocardiography, and SPECT for left and right ventricular ejection fraction compared with cardiac MRI: a meta-analysis. Eur Heart J Cardiovasc Imaging. 16(8):848–52.

    Google Scholar 

  31. Tamborini G, Marsan NA, Gripari P, Maffessanti F, Brusoni D, Muratori M, et al. Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects. J Am Soc Echocardiogr. 23(2):109–15.

    Google Scholar 

  32. Maffessanti F, Muraru D, Esposito R, Gripari P, Ermacora D, Santoro C, et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging. 6(5):700–10.

    Google Scholar 

  33. MuraruD, SpadottoV, CecchettoA, RomeoG, ArutaP, ErmacoraD, et al. New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool. Eur Heart J Cardiovasc Imaging. 2015. [Epub ahead of print]. http://dx.doi.org/10.1093/ehjci/jev309.

  34. Medvedofsky D, Addetia K, Patel AR, Sedlmeier A, Baumann R, Mor-Avi V, et al. Novel approach to three-dimensional echocardiographic quantification of right ventricular volumes and function from focused views. J Am Soc Echocardiogr. 28(10):1222–31.

    Google Scholar 

  35. Te Riele ASJM, Tandri H, Sanborn DM, Bluemke DA. Noninvasive multimodality imaging in ARVD/C. JACC Cardiovasc Imaging. 8(5):597–611.

    Google Scholar 

  36. Konstantinides SV, Torbicki A, Agnelli G, Danchin N, Fitzmaurice D, Galie N, et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;35(43):3033–69, 3069a – 3069k.

    PubMed  Google Scholar 

  37. Quick S, Speiser U, Kury K, Schoen S, Ibrahim K, Strasser R. Evaluation and classification of right ventricular wall motion abnormalities in healthy subjects by 3-tesla cardiovascular magnetic resonance imaging. Neth Hear J [Internet]. 2014;23(1):64–9. Available from: http://link.springer.com/10.1007/s12471-014-0620-2

    Article  Google Scholar 

  38. Gaynor SL, Maniar HS, Bloch JB, Steendijk P, Moon MR. Right atrial and ventricular adaptation to chronic right ventricular pressure overload. Circulation. 112(9 Suppl):I212–8.

    Google Scholar 

  39. Axell RG, Hoole SP, Hampton-Till J, White PA. RV diastolic dysfunction: time to re-evaluate its importance in heart failure. Heart Fail Rev. 20(3):363–73.

    Google Scholar 

  40. Yu HC, Sanderson JE. Different prognostic significance of right and left ventricular diastolic dysfunction in heart failure. Clin Cardiol. 22(8):504–12.

    Google Scholar 

  41. Hardegree EL, Sachdev A, Villarraga HR, Frantz RP, McGoon MD, Kushwaha SS, et al. Role of serial quantitative assessment of right ventricular function by strain in pulmonary arterial hypertension. Am J Cardiol. 111(1):143–8.

    Google Scholar 

  42. Hayek S, Sims DB, Markham DW, Butler J, Kalogeropoulos AP. Assessment of right ventricular function in left ventricular assist device candidates. Circ Cardiovasc Imaging. 7(2):379–89.

    Google Scholar 

  43. Lisi M, Cameli M, Righini FM, Malandrino A, Tacchini D, Focardi M, et al. RV longitudinal deformation correlates with myocardial fibrosis in patients with end-stage heart failure. JACC Cardiovasc Imaging. 8(5):514–22.

    Google Scholar 

  44. Cappelli F, Porciani MC, Bergesio F, Perlini S, Attana P, Moggi Pignone A, et al. Right ventricular function in AL amyloidosis: characteristics and prognostic implication. Eur Heart J Cardiovasc Imaging. 13(5):416–22.

    Google Scholar 

  45. Iacoviello M, Forleo C, Puzzovivo A, Nalin I, Guida P, Anaclerio M, et al. Altered two-dimensional strain measures of the right ventricle in patients with Brugada syndrome and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Eur J Echocardiogr. 12(10):773–81.

    Google Scholar 

  46. Teske AJ, De Boeck BWL, Olimulder M, Prakken NH, Doevendans PAF, Cramer MJ. Echocardiographic assessment of regional right ventricular function: a head-to-head comparison between 2-dimensional and tissue Doppler-derived strain analysis. J Am Soc Echocardiogr. 21(3):275–83.

    Google Scholar 

  47. Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, et al. Reference values for right ventricular strain in patients without cardiopulmonary disease: aprospective evaluation and meta-analysis. Echocardiography. 32(5):787–96.

    Google Scholar 

  48. Muraru D, Onciul S, Peluso D, Soriani N, Cucchini U, Aruta P, et al. Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ Cardiovasc Imaging. 9(2):e003866.

    Google Scholar 

  49. Levy PT, Sanchez Mejia AA, Machefsky A, Fowler S, Holland MR, Singh GK. Normal ranges of right ventricular systolic and diastolic strain measures in children: a systematic review and meta-analysis. J Am Soc Echocardiogr. 27(5):549–60. e3

    Google Scholar 

  50. Teske AJ, Prakken NH, De Boeck BW, Velthuis BK, Martens EP, Doevendans PA, et al. Echocardiographic tissue deformation imaging of right ventricular systolic function in endurance athletes. Eur Heart J. 30(8):969–77.

    Google Scholar 

  51. Bansal M, Cho G-Y, Chan J, Leano R, Haluska BA, Marwick TH. Feasibility and accuracy of different techniques of two-dimensional speckle based strain and validation with harmonic phase magnetic resonance imaging. J Am Soc Echocardiogr. 21(12):1318–25.

    Google Scholar 

  52. HayabuchiY, SakataM, KagamiS. Right ventricular myocardial deformation patterns in children with congenital heart disease associated with right ventricular pressure overload. Eur Hear J – Cardiovasc Imaging [Internet].2015;16(8):890–899. Available from: http://ehjcimaging.oxfordjournals.org/lookup/doi/10.1093/ehjci/jev011

    Google Scholar 

  53. Ozawa K, Funabashi N, Takaoka H, Kamata T, Nomura F, Kobayashi Y. Consistencies of 3D TTE global longitudinal strain of both ventricles between assessors were worse for 2D, but better for 3D ventricular EF. Int J Cardiol. 198:140–51.

    Google Scholar 

  54. Atsumi A, Ishizu T, Kameda Y, Yamamoto M, Harimura Y, Machino-Ohtsuka T, et al. Application of 3-dimensional speckle tracking imaging to the assessment of rightventricular regional deformation. Circ J. 2013;77(7):1760–8.

    Article  PubMed  Google Scholar 

  55. Ozawa K, Funabashi N, Takaoka H, Tanabe N, Yanagawa N, Tatsumi K, et al. Utility of three-dimensional global longitudinal strain of the right ventricle using transthoracic echocardiography for right ventricular systolic function in pulmonary hypertension. Int J Cardiol. 2014:426–30.

    Google Scholar 

  56. Smith BCF, Dobson G, Dawson D, Charalampopoulos A, Grapsa J, Nihoyannopoulos P. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 64(1):41–51.

    Google Scholar 

  57. Rajagopalan N, Dohi K, Simon MA, Suffoletto M, Edelman K, Murali S, et al. Right ventricular dyssynchrony in heart failure: a tissue Doppler imaging study. J Card Fail. 12(4):263–7.

    Google Scholar 

  58. Kalogeropoulos AP, Georgiopoulou VV, Howell S, Pernetz M-A, Fisher MR, Lerakis S, et al. Evaluation of right intraventricular dyssynchrony by two-dimensional strain echocardiography in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr. 2008;21(9):1028–34.

    Article  PubMed  Google Scholar 

  59. Badagliacca R, Reali M, Poscia R, Pezzuto B, Papa S, Mezzapesa M, et al. Right intraventricular dyssynchrony in idiopathic, heritable, and anorexigen-induced pulmonary arterial hypertension: clinical impact and reversibility. JACC Cardiovasc Imaging. 2015;8(6):642–52.

    Article  PubMed  Google Scholar 

  60. Maceira AM, Prasad SK, Khan M, Pennell DJ. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J. 2006;27(23):2879–88.

    Article  PubMed  Google Scholar 

  61. Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ. Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009;11:19.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sarikouch S, Peters B, Gutberlet M, Leismann B, Kelter-Kloepping A, Koerperich H, et al. Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging. 2010;3(1):65–76.

    Article  PubMed  Google Scholar 

  63. Kawut SM, Lima JAC, Barr RG, Chahal H, Jain A, Tandri H, et al. Sex and race differences in right ventricular structure and function: the multi-ethnic study of atherosclerosis-right ventricle study. Circulation. 2011;123(22):2542–51.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Greil GF, Beerbaum P, Razavi R, Miller O. Imaging the right ventricle: non-invasive imaging. Heart. 2008;94(6):803–8.

    Article  PubMed  Google Scholar 

  65. Youssef A, Ibrahim E-SH, Korosoglou G, Abraham MR, Weiss RG, Osman NF. Strain-encoding cardiovascular magnetic resonance for assessment of right-ventricular regional function. J Cardiovasc Magn Reson. 2008;10:33.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Menteer J, Weinberg PM, Fogel MA. Quantifying regional right ventricular function in tetralogy of fallot. J Cardiovasc Magn Reson. 2005;7(5):753–61.

    Article  PubMed  Google Scholar 

  67. Sievers B, Addo M, Franken U, Trappe H-J. Right ventricular wall motion abnormalities found in healthy subjects by cardiovascular magnetic resonance imaging and characterized with a new segmental model. J Cardiovasc Magn Reson. 2004;6(3):601–8.

    Article  PubMed  Google Scholar 

  68. Bomma C, Rutberg J, Tandri H, Nasir K, Roguin A, Tichnell C, et al. Misdiagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Cardiovasc Electrophysiol. 2004;15(3):300–6.

    Article  PubMed  Google Scholar 

  69. Shehata ML, Harouni AA, Skrok J, Basha TA, Boyce D, Lechtzin N, et al. Regional and global biventricular function in pulmonary arterial hypertension: acardiac MR imaging study. Radiology. 2013;266(1):114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Heermann P, Hedderich DM, Paul M, Schulke C, Kroeger JR, Baessler B, et al. Biventricular myocardial strain analysis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) using cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson. 2014;16:75.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Khalaf A, Tani D, Tadros S, Madan S. Right- and left-ventricular strain evaluation in repaired pediatric tetralogy offallot patients using magnetic resonance tagging. Pediatr Cardiol. 2013;34(5):1206–11.

    Article  PubMed  Google Scholar 

  72. Plumhans C, Muhlenbruch G, Rapaee A, Sim K-H, Seyfarth T, Gunther RW, et al. Assessment of global right ventricular function on 64-MDCT compared with MRI. AJR Am J Roentgenol. 2008;190(5):1358–61.

    Article  PubMed  Google Scholar 

  73. Coche E, Vlassenbroek A, Roelants V, D’Hoore W, Verschuren F, Goncette L, et al. Evaluation of biventricular ejection fraction with ECG-gated 16-slice CT: preliminary findings in acute pulmonary embolism in comparison with radionuclide ventriculography. Eur Radiol. 2005;15(7):1432–40.

    Article  PubMed  Google Scholar 

  74. Maffei E, Messalli G, Martini C, Nieman K, Catalano O, Rossi A, et al. Left and right ventricle assessment with cardiac CT: validation study vscardiac MR. Eur Radiol. 2012;22(5):1041–9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dupont MVM, Dragean CA, Coche EE. Right ventricle function assessment by MDCT. AJR Am J Roentgenol. 2011;196(1):77–86.

    Article  PubMed  Google Scholar 

  76. Ghaye B, Ghuysen A, Bruyere P-J, D’Orio V, Dondelinger RF. Can CT pulmonary angiography allow assessment of severity and prognosis in patients presenting with pulmonary embolism? What the radiologist needs to know. Radiographics. 2006;26(1):23–40.

    Article  PubMed  Google Scholar 

  77. Lin FY, Devereux RB, Roman MJ, Meng J, Jow VM, Jacobs A, et al. Cardiac chamber volumes, function, and mass as determined by 64-multidetector row computed tomography: mean values among healthy adults free of hypertension and obesity. JACC Cardiovasc Imaging. 2008;1(6):782–6.

    Article  PubMed  Google Scholar 

  78. Sibille L, Bouallegue FB, Bourdon A, Micheau A, Vernhet-Kovacsik H, Mariano-Goulart D. Comparative values of gated blood-pool SPECT and CMR for ejection fraction and volume estimation. Nucl Med Commun. 2011;32(2):121–8.

    Article  PubMed  Google Scholar 

  79. Xie B-Q, Tian Y-Q, Zhang J, Zhao S-H, Yang M-F, Guo F, et al. Evaluation of left and right ventricular ejection fraction and volumes from gated blood-pool SPECT in patients with dilated cardiomyopathy: comparison with cardiac MRI. J Nucl Med. 2012;53(4):584–91.

    Article  PubMed  Google Scholar 

  80. Talati M, Hemnes A. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy. Pulm Circ. 2015;5(2):269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bokhari S, Raina A, Rosenweig EB, Schulze PC, Bokhari J, Einstein AJ, et al. PET imaging may provide a novel biomarker and understanding of right ventriculardysfunction in patients with idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging. 2011;4(6):641–7.

    Article  PubMed  Google Scholar 

  82. Wong YY, Ruiter G, Lubberink M, Raijmakers PG, Knaapen P, Marcus JT, et al. Right ventricular failure in idiopathic pulmonary arterial hypertension is associated with inefficient myocardial oxygen utilization. Circ Heart Fail. 2011;4(6):700–6.

    Article  CAS  PubMed  Google Scholar 

  83. van de Veerdonk MC, Marcus JT, Bogaard H-J, Vonk NA. State of the art: advanced imaging of the right ventricle and pulmonary circulation in humans (2013 Grover Conference series). Pulm Circ. 2014;4(2):158–68.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi P. Badano MD, PHD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Surkova, E., Muraru, D., Badano, L.P. (2016). The Imaging of Right Ventricular Dysfunction in Heart Failure. In: Dorobanţu, M., Ruschitzka, F., Metra, M. (eds) Current Approach to Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-45237-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45237-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45236-4

  • Online ISBN: 978-3-319-45237-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics