Skip to main content
Log in

Cellular and molecular regulation of cardiac glucose transport

  • Topics in Molecular Biology
  • Published:
Journal of Nuclear Cardiology Aims and scope

Conclusion

Tremendous advances have recently been achieved in our understanding of the cellular and molecular mechanisms regulating glucose transport in the heart and other tissues. An intricate network of signaling molecules and intracellular proteins trigger and mediate the vesicular movement of GLUT vesicles, targeting them to the sarcolemma. Ongoing research in this area promises to further define these mechanisms in the heart, which may lead to potential targets for pharmacologic or gene therapy to modulate glucose transport in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  2. Bax JJ, Visser FC, van Lingen A, Huitink JM, Kamp O, van Leeuwen GR, et al. Feasibility of assessing regional myocardial uptake of 18F-fluorodeoxyglucose using single photon emission computed tomography. Eur Heart J 1993;14:1675–82.

    PubMed  CAS  Google Scholar 

  3. Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA, Veech RL, et al. Control of glucose utilization in working perfused rat heart. J Biol Chem 1994;269:25502–14.

    PubMed  CAS  Google Scholar 

  4. Depre C, Vanoverschelde JL, Taegtmeyer H. Glucose for the heart. Circulation 1999;99:578–88.

    PubMed  CAS  Google Scholar 

  5. Bell G, Kayano T, Buse J, Burrant C, Takeda J, Lin D, et al. Molecular biology of mammalian glucose transporters. Diabetes Care 1990;13:198–208.

    Article  PubMed  CAS  Google Scholar 

  6. Mueckler M, Hresko RC, Sato M. Structure, function and biosynthesis of GLUT1. Biochem Soc Trans 1997;25:951–4.

    PubMed  CAS  Google Scholar 

  7. Brosius III F, Liu Y, Nguyen N, Sun D, Bartlett J, Schwaiger M. Persistent myocardial ischemia increases GLUT1 glucose transporter expression in both ischemic and non-ischemic heart regions. J Mol Cell Cardiol 1997;29:1675–85.

    Article  PubMed  CAS  Google Scholar 

  8. Young LH, Renfu Y, Russell RR, Hu X, Caplan MJ, Ren J, et al. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 1997;95:415–22.

    PubMed  CAS  Google Scholar 

  9. Fischer Y, Thomas J, Sevilla L, Muñoz P, Becker C, Holman G, et al. Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. J Biol Chem 1997;272:7085–92.

    Article  PubMed  CAS  Google Scholar 

  10. Mueckler M. Facilitative glucose transporters. Eur J Biochem 1994;219:713–25.

    Article  PubMed  CAS  Google Scholar 

  11. Grover-McKay M, Walsh SA, Thompson SA. Glucose transporter 3 (GLUT3) protein is present in human myocardium. Biochim Biophys Acta 1999;1416:145–54.

    Article  PubMed  CAS  Google Scholar 

  12. Stephens J, Pilch P. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr Rev 1995;16:529–46.

    Article  PubMed  CAS  Google Scholar 

  13. Young LH, Russell RR, Yin R, Caplan MJ, Ren J, Bergeron R, et al. Regulation of myocardial glucose uptake and transport during ischemia and energetic stress. Am J Cardiol 1999;83:25–30H.

    Article  Google Scholar 

  14. Sun D, Nguyen N, DeGrado TR, Schwaiger M, Brosius FC. Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation 1994;89:793–8.

    PubMed  CAS  Google Scholar 

  15. Russell RR, Yin R, Caplan MJ, Hu X, Ren J, Shulman GI, et al. Additive effects of hyperinsulinemia and ischemia on myocardial GLUT1 and GLUT4 translocation in vivo. Circulation 1998;98:2180–6.

    PubMed  CAS  Google Scholar 

  16. Douen A, Ramlal T, Rastogi S, Bilan P, Cartee G, Vranic M, et al. Exercise induces recruitment of the “insulin-responsive glucose transporter”. J Biol Chem 1990;265:13427–30.

    PubMed  CAS  Google Scholar 

  17. Cartee G, Douen A, Ramlal T, Klip A, Holloszy J. Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol 1991;70:1593–600.

    PubMed  CAS  Google Scholar 

  18. Burant CF, Takeda J, Brot-Laroche E, Bell GI, Davidson NO. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 1992;267:14523–6.

    PubMed  CAS  Google Scholar 

  19. Morgan H, Cadenas E, Regen D, Park C. Regulation of glucose uptake in muscle. II. Rate-limiting steps and effects of insulin and anoxia in heart muscle from diabetic rats. J Biol Chem 1961;236:262–8.

    PubMed  CAS  Google Scholar 

  20. Stanley WC, Hall JL, Stone CK, Hacker TA. Acute myocardial ischemia causes a transmural gradient in glucose extraction but not in glucose uptake. Am J Physiol 1992;262:H91–6.

    Google Scholar 

  21. Charron MJ, Katz BE, Olson AL. GLUT4 gene regulation and manipulation. J Biol Chem 1999;274:3253–6.

    Article  PubMed  CAS  Google Scholar 

  22. Cushman S, Wandala L. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. J Biol Chem 1980;255:4758–62.

    PubMed  CAS  Google Scholar 

  23. Sato S, Nishimura H, Clark AE, Kokka I, Vanuatu SJ, Simpson IA, et al. Use of bismannose photo label to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J Biol Chem 1993;268:17820–9.

    Google Scholar 

  24. James D, Hiked J, Lawrence J. Isoproterenol stimulates phosphorylation of the insulin-regulatable glucose transporter in rat adipocytes. Proc Natl Acad Sci USA 1989;86:8368–72.

    Article  PubMed  CAS  Google Scholar 

  25. Lawrence J, Hiked J, James D. Phosphorylation of the glucose transporter in rat adipocytes: identification of the intracellular domain at the carboxyl terminus as a target for phosphorylation in intact cells and in vitro. J Biol Chem 1990;265:2324–32.

    PubMed  CAS  Google Scholar 

  26. Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A. An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes. J Biol Chem 1999;274:10071–8.

    Article  PubMed  CAS  Google Scholar 

  27. Marette A, Burdett E, Douen A, Vranic M, Klip A. Insulin induces the translocation of GLUT4 from a unique intracellular organelle to transverse tubules in rat skeletal muscle. Diabetes 1992;41:1562–9.

    Article  PubMed  CAS  Google Scholar 

  28. Slot JW, Gauze HJ, Gigengack S, James DE, Lennard GE. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci U S A 1991;88:7815–9.

    Article  PubMed  CAS  Google Scholar 

  29. Holman G, Kokka I, Clark A, Flower C, Salts J, Habberfield A, Simpson I, Cushman S. Cell surface labeling of glucose transporter Isoforms GLUT4 by BIS-mannose photo label. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester. J Biol Chem 1990;265:18172–9.

    PubMed  CAS  Google Scholar 

  30. Fischer Y, Kamp J, Thomas J, Popping S, Rose H, Kerpen C, et al. Signals mediating stimulation of cardiomyocytes glucose transport by the alpha-adrenergic agonist phenylephrine. Am J Physiol 1996;270:C1211–20.

    PubMed  CAS  Google Scholar 

  31. Oakey PB, Van Wearing DH, Dobson SP, Gould GW, Tavare JM. GLUT4 vesicle dynamics in living 3T3 L1 adipocytes visualized with green-fluorescent protein. Biochem J 1997;327:637–42.

    Google Scholar 

  32. Wheeler T. Translocation of glucose transporters in response to anoxia in heart. J Biol Chem 1988;263:19447–54.

    PubMed  CAS  Google Scholar 

  33. Zorzano A, Sevilla L, Camps M, Becker C, Meyer J, Kammermeier H, et al. Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes. Am J Cardiol 1997;80:65–76A.

    Article  Google Scholar 

  34. Czech MP, Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem 1999;274:1865–8.

    Article  PubMed  CAS  Google Scholar 

  35. Egert S, Nguyen N, Brosius III F, Schwaiger M. Effects of wortmannin on insulin-and ischemia-induced stimulation of GLUT4 translocation and FDG uptake in perfused rat hearts. Cardiovasc Res 1997;35: 283–93.

    Article  PubMed  CAS  Google Scholar 

  36. Kohn A, Summers S, Birnbaum M, Roth R. Expression of a constitutively active Akt ser/thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996;271:31372–8.

    Article  PubMed  CAS  Google Scholar 

  37. Bandyopadhyay G, Standaert ML, Zhao L, Yu B, Avignon A, Galloway L, et al. Activation of protein kinase C (alpha, beta, and zeta) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-zeta in glucose transport. J Biol Chem 1997;272:2551–8.

    Article  PubMed  CAS  Google Scholar 

  38. Hayashi T, Wojtaszewski JF, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol 1997;273:E1039–51.

    PubMed  CAS  Google Scholar 

  39. Lund S, Holman G, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A 1995;92:5817–21.

    Article  PubMed  CAS  Google Scholar 

  40. Henriksen E, Rodnick K, Holloszy J. Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium. J Biol Chem 1989;264:21536–43.

    PubMed  CAS  Google Scholar 

  41. Balon TW, Nadler JL. Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 1997;82:359–63.

    PubMed  CAS  Google Scholar 

  42. Kapur S, Bédard S, Marcotte B, Côté C, Marette A. Expression of nitric oxide synthase in skeletal muscle: a novel role for nitric oxide as a modulator of insulin action. Diabetes 1997;46:1691–700.

    Article  PubMed  CAS  Google Scholar 

  43. Rett K, Wicklmayr M, Dietze G, Häring H. Insulin-induced glucose transporter (GLUT1 and GLUT4) translocation in cardiac muscle tissue is mimicked by bradykinin. Diabetes 1996;45:S66–9.

    PubMed  Google Scholar 

  44. Fischer Y, Thomas J, Holman GD, Rose H, Kammermeier H. Contraction-independent effects of catecholamines on glucose transport in isolated rat cardiomyocytes. Am J Physiol 1996;270:C1204–10.

    PubMed  CAS  Google Scholar 

  45. Denton RM, Tavare JM. Does mitogen-activated-protein kinase have a role in insulin action? The cases for and against. Eur J Biochem 1995;227:597–611.

    Article  PubMed  CAS  Google Scholar 

  46. Hansen PA, Corbett JA, Holloszy JO. Phorbol esters stimulate muscle glucose transport by a mechanism distinct from the insulin and hypoxia pathways. Am J Physiol 1997;273:E28–36.

    PubMed  CAS  Google Scholar 

  47. Han DH, Hansen PA, Nolte LA, Holloszy JO. Removal of adenosine decreases the responsiveness of glucose transport to insulin and contractions. Diabetes 1998;47:1671–5.

    Article  PubMed  CAS  Google Scholar 

  48. Rattigan S, Appleby G, Clark M. Insulin-like action of catecholamines and Ca2+ to stimulate glucose transport and GLUT4 translocation in perfused rat heart. Biochim Biophys Acta 1991;1094:217–23.

    Article  PubMed  CAS  Google Scholar 

  49. Egert S, Nguyen N, Schwaiger M. Contribution of alpha-adrenergic and beta-adrenergic stimulation to ischemia-induced glucose transporter (GLUT)4 and GLUT1 translocation in the isolated perfused rat heart. Circ Res 1999;84:1407–15.

    PubMed  CAS  Google Scholar 

  50. Doenst T, Taegtmeyer H. Alpha-adrenergic stimulation mediates glucose uptake through phosphatidylinositol 3-kinase in rat heart. Circ Res 1999;84:467–74.

    PubMed  CAS  Google Scholar 

  51. Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998;67:821–55.

    Article  PubMed  CAS  Google Scholar 

  52. Hardie DG, Carling D. The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur J Biochem 1997;246:259–73.

    Article  PubMed  CAS  Google Scholar 

  53. Hardie D. Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim Biophys Acta 1992;1123:231–8.

    PubMed  CAS  Google Scholar 

  54. Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 1996;270:EE299–304.

    Google Scholar 

  55. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 1995;270:17513–20.

    Article  PubMed  CAS  Google Scholar 

  56. Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J 1998;17:1688–99.

    Article  PubMed  CAS  Google Scholar 

  57. Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 1995;229:558–65.

    Article  PubMed  CAS  Google Scholar 

  58. Russell RR, Bergeron R, Shulman GI, Young LH. Translocation of myocardial GLUT4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 1999;277:H643–9.

    PubMed  CAS  Google Scholar 

  59. Asefaw S, Russell RR, Bergeron R, Hu J, Dione D, Sinusas AJ, et al. Stimulation of AMP-activated protein kinase by AICAR increases heart glucose uptake and GLUT4 and GLUT1 translocation to the sarcolemma in vivo [abstract]. Diabetes. In press.

  60. Pessin JE, Thurmond DC, Elmendorf JS, Coker KJ, Okada S. Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. J Biol Chem 1999;274:2593–6.

    Article  PubMed  CAS  Google Scholar 

  61. Smith RM, Charron MJ, Shah N, Lodish HF, Jarett L. Immunoelectron microscopic demonstration of insulin-stimulated translocation of glucose transporters to the plasma membrane of isolated rat adipocytes and masking of the carboxyl-terminal epitope of intracellular GLUT4. Proc Natl Acad Sci U S A 1991;88:6893–7.

    Article  PubMed  CAS  Google Scholar 

  62. Kandror KV, Pilch PF. gp160, a tissue-specific marker for insulin-activated glucose transport. Proc Natl Acad Sci U S A 1994;91:8017–21.

    Article  PubMed  CAS  Google Scholar 

  63. Waters S, D'Auria M, Martin S, Nguyen C, Kozma L, Luskey K. The amino terminus of insulin-responsive aminopeptidase causes GLUT4 translocation in 3T3-L1 adipocytes. J Biol Chem 1997;272:23323–7.

    Article  PubMed  CAS  Google Scholar 

  64. Martin S, Tellam J, Livingstone C, Slot JW, Gould GW, James DE. The glucose transporter (GLUT-4) and vesicle-associated membrane protein-2 (VAMP-2) are segregated from recycling endosomes in insulin-sensitive cells. J Cell Biol 1996;134:625–35.

    Article  PubMed  CAS  Google Scholar 

  65. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993;362:318–24.

    Article  PubMed  CAS  Google Scholar 

  66. Sevilla L, Tomas E, Munoz P, Guma A, Fischer Y, Thomas J, et al. Characterization of two distinct intracellular GLUT4 membrane populations in muscle fiber. Differential protein composition and sensitivity to insulin. Endocrinology 1997;138:3006–15.

    Article  PubMed  CAS  Google Scholar 

  67. Tamori Y, Hashiramoto M, Araki S, Kamata Y, Takahashi M, Kozaki S, et al. Cleavage of vesicle-associated membrane protein (VAMP)-2 and cellubrevin on GLUT4-containing vesicles inhibits the translocation of GLUT4 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 1996;220:740–5.

    Article  PubMed  CAS  Google Scholar 

  68. Pevsner J, Hsu SC, Braun JE, Calakos N, Ting AE, Bennett MK, et al. Specificity and regulation of a synaptic vesicle docking complex. Neuron 1994;13:353–61.

    Article  PubMed  CAS  Google Scholar 

  69. Wang G, Witkin JW, Hao G, Bankaitis VA, Scherer PE, Baldini G. Syndet is a novel SNAP-25 related protein expressed in many tissues. J Cell Sci 1997;110:505–13.

    PubMed  CAS  Google Scholar 

  70. Thurmond DC, Ceresa BP, Okada S, Elmendorf JS, Coker K, Pessin JE. Regulation of insulin-stimulated GLUT4 translocation by Munc18c in 3T3L1 adipocytes. J Biol Chem 1998;273:33876–83.

    Article  PubMed  CAS  Google Scholar 

  71. Baldini G, Hohman R, Charron MJ, Lodish HF. Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT 4 to the plasma membrane in alpha-toxin-permeabilized rat adipose cells. J Biol Chem 1991;266:4037–40.

    PubMed  CAS  Google Scholar 

  72. Uphues I, Kolter T, Goud B, Eckel J. Insulin-induced translocation of the glucose transporter GLUT4 in cardiac muscle: studies on the role of small-molecular-mass GTP-binding proteins. Biochem J 1994;301:177–82.

    PubMed  CAS  Google Scholar 

  73. Nishimura H, Zarnowski MJ, Simpson IA. Glucose transporter recycling in rat adipose cells. Effects of potassium depletion. J Biol Chem 1993;268:19246–53.

    PubMed  CAS  Google Scholar 

  74. Al-Hasani H, Hinck CS, Cushman SW. Endocytosis of the glucose transporter GLUT4 is mediated by the GTPase dynamin. J Biol Chem 1998;273:17504–10.

    Article  PubMed  CAS  Google Scholar 

  75. Volchuk A, Narine S, Foster L, Grabs D, De Camilli P, Klip A. Perturbation of dynamin II with an amphiphysin SH3 domain increases GLUT4 glucose transporters at the plasma membrane in 3T3-L1 adipocytes. Dynamin II participates in GLUT4 endocytosis. J Biol Chem 1998;273:8169–76.

    Article  PubMed  CAS  Google Scholar 

  76. Olson AL, Liu ML, Moye-Rowley WS, Buse JB, Bell GI, Pessin JE. Hormonal/metabolic regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J Biol Chem 1993;268:9839–46.

    PubMed  CAS  Google Scholar 

  77. Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL. Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J Biol Chem 1998;273:14285–92.

    Article  PubMed  CAS  Google Scholar 

  78. Vannucci SJ, Koehler-Stec EM, Li K, Reynolds TH, Clark R, Simpson IA. GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Res 1998;797:1–11.

    Article  PubMed  CAS  Google Scholar 

  79. Wang C, Hu S. Developmental regulation in the expression of rat heart glucose transporters. Biochem Biophys Res Commun 1991;177:1095–100.

    Article  PubMed  CAS  Google Scholar 

  80. Montessuit C, Thorburn A. Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. J Biol Chem 1999;274:9006–12.

    Article  PubMed  CAS  Google Scholar 

  81. Kraegen E, Sowden J, Halstead M, Clark P, Rodnick K, Chisholm D, et al. Glucose transporters and in vivo glucose uptake in skeletal and cardiac muscle: fasting, insulin stimulation and immunoisolation studies of GLUT1 and GLUT4. Biochem J 1993;295:287–93.

    PubMed  CAS  Google Scholar 

  82. Garvey WT, Hardin D, Juhaszova M, Dominguez JH. Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Am J Physiol 1993;264:H837–44.

    PubMed  CAS  Google Scholar 

  83. Kainulainen H, Breiner J, Schürmann A, Marttinen A, Virjo A, Joost H. In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta 1994;1225:275–82.

    PubMed  CAS  Google Scholar 

  84. Gerrits P, Olson A, Pessin J. Regulation of the GLUT4/muscle-fat glucose transporter mRNA in adipose tissue of insulin-deficient diabetic rats. J Biol Chem 1993;268:640–4.

    PubMed  CAS  Google Scholar 

  85. Laybutt DR, Thompson AL, Cooney GJ, Kraegen EW. Selective chronic regulation of GLUT1 and GLUT4 content by insulin, glucose, and lipid in rat cardiac muscle in vivo. Am J Physiol 1997;273:H1309–16.

    PubMed  CAS  Google Scholar 

  86. Paternostro G, Pagano D, Gnecchi-Ruscone T, Bonser RS, Camici PG. Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res 1999;42:246–53.

    Article  PubMed  CAS  Google Scholar 

  87. Sivitz WI, Lund DD, Yorek B, Grover-McKay M, Schmid PG. Pretranslational regulation of two cardiac glucose transporters in rats exposed to hypobaric hypoxia. Am J Physiol 1992;263:E562–9.

    PubMed  CAS  Google Scholar 

  88. Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. Embo J 1998;17:3005–15.

    Article  PubMed  CAS  Google Scholar 

  89. Malhotra R, Brosius FCr. Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 1999;274:12567–75.

    Article  PubMed  CAS  Google Scholar 

  90. Lombardi AM, Moller D, Loizeau M, Girard J, Leturque A. Phenotype of transgenic mice overexpressing GLUT4 and hexokinase II in muscle. FASEB J 1997;11:1137–44.

    PubMed  CAS  Google Scholar 

  91. Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 1995;377:151–5.

    Article  PubMed  CAS  Google Scholar 

  92. Stenbit AE, Tsao TS, Li J, Burcelin R, Geenen DL, Factor SM, et al. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med 1997;3:1096–101.

    Article  PubMed  CAS  Google Scholar 

  93. Abel ED, Kaulbach HC, Tian R, Hopkins JCA, Duffy J, Doetschman T, et al. Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 1999;104:1703–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, L.H., Coven, D.L. & Russell, R.R. Cellular and molecular regulation of cardiac glucose transport. J Nucl Cardiol 7, 267–276 (2000). https://doi.org/10.1016/S1071-3581(00)70016-X

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1071-3581(00)70016-X

Keywords

Navigation