Skip to main content
Log in

Structural determination of sphingomyelin by tandem mass spectrometry with electrospray ionization

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Alkaline metal adduct ions of sphingomyelin were formed by electrospray ionization in positive ion mode. Under low energy collisionally activated dissociation (CAD), the product ion spectra yield abundant fragment ions representative of both long chain base and fatty acid which permit unequivocal determination of the structure. Tandem spectra obtained by constant neutral loss scanning permit identification of sphingomyelin class and specific long chain base subclass in the mixture. The fragmentation pathways under CAD were proposed, and were further confirmed by source CAD tandem mass spectrometry. The total analysis of sphingomyelin mixtures from bovine brain, bovine erythrocytes, and chicken egg yolk is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sweeley, C. C. Purification and partial characterization of sphingomyelin from human plasma. J. Lipid Res. 1963, 4, 402–406.

    CAS  Google Scholar 

  2. Osamu, M.; Tsubono, H.; Akiyama, M.; Sakagami, T. Sphingomyelins in human erythrocytes and plasma. J. Biochem. (Tokyo) 1967, 62, 618–620.

    CAS  Google Scholar 

  3. Samuelsson, K. On the occurrence and nature of free ceramides in human plasma. Biochim. Biophys. Acta 1969, 176, 211–213.

    CAS  Google Scholar 

  4. Lastennet, A.; Freysz, L.; Bieth, R. Distribution and metabolism of 2 types of sphingomyelins in various zones of the central nervous system. J. Physiol. (Paris) 1970, 62, 289.

    CAS  Google Scholar 

  5. Hannun, Y. A. Sphingolipid second messengers: tumor suppressor lipids. Adv. Exp. Med. Biol. 1997, 400A, 305–312.

    CAS  Google Scholar 

  6. Hannun, Y. A.; Obeid, L. M.; Wolff, R. A. The novel second messenger ceramide: identification, mechanism of action, and cellular activity. Adv. Lipid Res. 1993, 25, 43–64.

    CAS  Google Scholar 

  7. Chao, M. V. Ceramide: a potential second messenger in the nervous system. Mol. Cell Neurosci. 1995, 6, 91–96.

    Article  CAS  Google Scholar 

  8. Morrison, W. R.; Hay, J. D. Polar lipids in bovine milk. II. Long-chain bases, normal and 2-hydroxy fatty acids, and isomeric cis and trans monoenoic fatty acids in the sphingolipids. Biochim. Biophys. Acta 1969, 202, 460–467.

    Google Scholar 

  9. Nyberg, L. In Phospholipids: Characterization, Metabolism and Novel Biological Applications; Cevc, G.; Paltauf, F., Eds.; AOCS: Champaign, IL, 1995; p 125.

    Google Scholar 

  10. Minami, H.; Nylander, T.; Carlsson, A.; Larsson, K. Incorporation of proteins in sphingomyelin-water gel phases. Chem. Phys. Lipids 1996, 79, 65–70.

    Article  CAS  Google Scholar 

  11. Jungalwala, F. B.; Evans, J. E.; McCluer, R. H. Compositional and molecular species analysis of phospholipids by high performance liquid chromatography coupled with chemical ionization mass spectrometry. J. Lipid Res. 1984, 25, 738–749.

    CAS  Google Scholar 

  12. Kim, H. Y.; Salem, N. Jr. Application of thermospray high-performance liquid chromatography/mass spectrometry for the determination of phospholipids and related compounds. Anal. Chem. 1987, 59, 722–726.

    Article  CAS  Google Scholar 

  13. Valeur, A.; Olsson, N. U.; Kaufmann, P.; Wada, S.; Kroon, C.-G.; Westerdahl, G.; Odham, G. Quantification and comparison of some natural sphingomyelins by on-line high-performance liquid chromatography/discharge-assisted thermospray mass spectrometry. Biol. Mass Spectrom. 1994, 23, 313–319.

    Article  CAS  Google Scholar 

  14. Byrdwell, W. C.; Borchman, D. Liquid chromatography/massspectrometric characterization of sphingomyelin and dihydrosphingomyelin of human lens membranes. Ophtahl. Res. 29, 191, 1997.

  15. Murphy, R. C.; Harrison, K. A. Fast atom bombardment mass spectrometry of phospholipids. Mass Spectrom. Rev. 1994, 13, 57–75.

    Article  CAS  Google Scholar 

  16. Ann, Q.; Adams, J. Collision-induced decomposition of sphingomyelins for structural elucidation. Biol. Mass Spectrom. 1993, 22, 285–294.

    Article  CAS  Google Scholar 

  17. Kerwin, J. L.; Tuininga, A. R.; Ericsson, L. H. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J. Lipid Res. 1994, 35, 1102–1114.

    CAS  Google Scholar 

  18. Karlsson, A. A.; Michelsen, P.; Odham, G. Molecular species of sphingomyelin: determination by high-performance liquid chromatography/mass spectrometry with electrospray and high-performance liquid chromatography/tandem mass spectrometry with atmospheric pressure chemical ionization. J. Mass Spectrom. 1998, 33, 1192–1198.

    Article  CAS  Google Scholar 

  19. Han, X.; Gross, R. W. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl. Acad. Sci. USA 1994, 91, 10635–10639.

    Article  CAS  Google Scholar 

  20. Kim, H. Y.; Wang, T.-C. L.; Ma, Y.-C. Liquid chromatography/ mass spectrometry of phospholipids using electrospray ionization. Anal. Chem. 1994, 66, 3977–3982.

    Article  CAS  Google Scholar 

  21. Hsu, F. F.; Bohrer, A.; Turk, J. Formation of lithiated adducts of glycerophosphocholine lipids facilitates their identification by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 516–526.

    Article  CAS  Google Scholar 

  22. Hsu, F. F.; Turk, J. Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J. Am. Soc. Mass Spectrom. 1999, 10, 587–599.

    Article  CAS  Google Scholar 

  23. Gross, M. L. Charge remote fragmentations: methods, mechanism, and applications. Int. Mass Spectrom. Ion Processes 1992, 118/119, 137–158.

    Article  Google Scholar 

  24. Vetter, W.; Meister, W.; Oeaterhelt, G. 2-alkylimidazoline derivative to control fatty acid fragmentation upon electron impact and electrospray ionization. J. Mass Spectrom. 1998, 33, 461–472.

    Article  CAS  Google Scholar 

  25. Murphy, R. C. In Handbook of lipid research; Plenum: New York, 1993; p 190.

    Google Scholar 

  26. Adams, J.; Gross, M. L. Energy requirements for remote charge site decompositions and structural information from collisional activation of alkali metal cationized fatty alcohols. J. Am. Chem. Soc. 1988, 108, 6915–6921.

    Article  Google Scholar 

  27. Domingues, P.; Amado, F. M. L.; Marques, M. G. O. S.; Ferrer-Corrcia, A. J. Constant neutral loss scanning for the characterization of glycerol phosphatidylcholine phospholipids. J. Am. Soc. Mass Spectrom. 1998, 9, 1189–1195.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fong-Fu Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, FF., Turk, J. Structural determination of sphingomyelin by tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 11, 437–449 (2000). https://doi.org/10.1016/S1044-0305(99)00150-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(99)00150-6

Keywords

Navigation