Skip to main content

Chromatographic Separation and Quantitation of Sphingolipids from the Central Nervous System or Any Other Biological Tissue

  • Protocol
  • First Online:
Neuroprotection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2761))

  • 381 Accesses

Abstract

Chromatographic separation and purification of an individual lipid to homogeneity have long been introduced. Using this concept, a more precise method has been developed to identify and characterize the sphingolipid composition(s) using a small amount (30 mg) of biological sample. Sphingolipids (lipids containing sphingosine or dihydrosphingosine) are well-known regulators of the central nervous system development and play a critical role in neurodegenerative diseases. Introducing a silicic acid column chromatography, sphingolipid components have been separated to individual fractions such as ceramide, glucosyl/galactosylceramide, other neutral and acidic glycosphingolipids, including (dihydro)sphingosine and psychosine; as well as phospholipids from which individual components are quantified employing a single or combination of other advanced chromatography procedures such as thin-layer chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography-mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hannun YA, Bell RM (1987) Lysosphingolipids inhibit protein kinase C: implication for sphingolipidosis. Science 235:670–674

    Article  CAS  PubMed  Google Scholar 

  2. Miller LG Jr, Young JA, Ray SK, Wang G, Purohit S, Banik NL, Dasgupta S (2017) Sphingosine toxicity in EAE and MS: evidence for ceramide generation via serine-palmitoyltransferase activation. Neurochem Res 42:2755–2768

    Article  CAS  PubMed  Google Scholar 

  3. Dasgupta S, Hogan EL (2001) Chromatographic resolution and quantitative assay of CNS tissue sphingoids and sphingolipids. J Lipid Res 42:301–308

    Article  CAS  PubMed  Google Scholar 

  4. Dasgupta S, Kong J, Bieberich E (2013) Phytoceramide in vertebrate tissues: one step chromatography separation for molecular characterization of ceramide species. PLoS One 8:e80841

    Article  PubMed  PubMed Central  Google Scholar 

  5. Igishu H, Suzuki K (1984) Analysis of galactosphingosine (psychosine) in brain. J Lipid Res 25:1000–1006

    Article  Google Scholar 

  6. Williams MA, McCluer RH (1980) The use of Sep-Pak C18 cartridges during the isolation of gangliosides. J Neurochem 35:266–269

    Article  CAS  PubMed  Google Scholar 

  7. Naoi M, Lee YC, Roseman S (1974) Rapid and sensitive determination of sphingosine bases and sphingolipids with fluorescamine. Anal Biochem 58:571–577

    Article  CAS  PubMed  Google Scholar 

  8. Kisic A, Rapport MM (1974) Determination of long-chain base in glycosphingolipids with fluorescamine. J Lipid Res 15:179–180

    Article  CAS  PubMed  Google Scholar 

  9. Higgins TJ (1984) Simplified fluorometric assay for sphingosine bases. J Lipid Res 25:1007–1009

    Article  CAS  PubMed  Google Scholar 

  10. Shinoda H, Kobayashi T, Katayama M, Goto I, Nagara H (1987) Accumulation of galactosylsphingosine (psychosine) in the twitcher mouse: determination by HPLC. J Neurochem 49:92–99

    Article  CAS  PubMed  Google Scholar 

  11. Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R (1993) Ceramide composition of the psoriatic scale. Biochim Biophys Acta 1182:147–151

    Article  CAS  PubMed  Google Scholar 

  12. Saito T, Hakomori SI (1971) Quantitative isolation of total glycosphingolipids from animal cells. J Lipid Res 12:257–259

    Article  CAS  PubMed  Google Scholar 

  13. Dasgupta S, Hogan EL, Spicer SS (1996) Stage-specific expression of fuco-neolacto- (Lewis X) and ganglio-series neutral glycosphingolipids during brain development: characterization of Lewis X and related glycosphingolipids in bovine, human and rat brain. Glycoconj J 13:367–375

    Article  CAS  PubMed  Google Scholar 

  14. Chou DK, Jungalwala FB (1993) N-acetylglucosaminyltransferase regulates the expression of neolactoglycolipids including sulfoglucuronylglycolipids in the developing nervous system. J Biol Chem 268:21727–21733

    Article  CAS  PubMed  Google Scholar 

  15. Shibuya T, Watanabe Y, Nalley KA, Fusco A, Salafsky B (1989) The BCA protein determination system an analysis of several buffers incubation temperature and protein standards. J Tokyo Med Coll 47:677–682

    CAS  Google Scholar 

  16. Bischel MD, Austin JH (1963) A modified benzidine method for the chromatographic detection of sphingolipids and acid polysaccharides. Biochim Biophys Acta 70:598–600

    Article  CAS  PubMed  Google Scholar 

  17. Dasgupta S, Everhart MB, Bhat NR, Hogan EL (1997) Neutral monoglycosylceramides in rat brain: occurrence, molecular expression and developmental variation. Dev Neurosci 19:152–161

    Article  CAS  PubMed  Google Scholar 

  18. Kniep B, Mühlradt PF (1990) Immunochemical detection of glycosphingolipids on thin-layer chromatograms. Anal Biochem 188:5–8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the R01 grants (CA-091460 and NS-057811) from the NIH (Bethesda, MD, USA) to S.K.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ray, S.K., Dasgupta, S. (2024). Chromatographic Separation and Quantitation of Sphingolipids from the Central Nervous System or Any Other Biological Tissue. In: Ray, S.K. (eds) Neuroprotection. Methods in Molecular Biology, vol 2761. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3662-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3662-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3661-9

  • Online ISBN: 978-1-0716-3662-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics