Skip to main content
Log in

Derivatization of protonated peptides via gas phase ion—molecule reactions with acetone

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The protonated [M + H]+ ions of glycine, simple glycine containing peptides, and other simple di- and tripeptides react with acetone in the gas phase to yield [M + H + (CH3)2CO]+ adduct ions, some of which fragment via water loss to give [M + H + (CH3)2CO − H2O]+ Schiff’s base adducts. Formation of the [M + H + (CH3)2CO]+ adduct ions is dependent on the difference in proton affinities between the peptide M and acetone, while formation of the [M + H + (CH3)2CO − H2O]+Schiff’s base adducts is dependent on the ability of the peptide to act as an intramolecular proton “shuttle.” The structure and mechanisms for the formation of these Schiff’s base adducts have been examined via the use of collision-induced dissociation tandem mass spectrometry (CID MS/MS), isotopic labeling [using (CD3)2CO] and by comparison with the reactions of Schiff’s base adducts formed in solution. CID MS/MS of these adducts yield primarily N-terminally directed a- and b-type “sequence” ions. Potential structures of the b 1 ion, not usually observed in the product ion spectra of protonated peptide ions, were examined using ab initio calculations. A cyclic 5 membered pyrrolinone, formed by a neighboring group participation reaction from an enamine precursor, was predicted to be the primary product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edman, P. A Method for the determination of the amino acid sequence in peptides. Arch. Biochem. Biophys. 1949, 22, 475–476.

    CAS  Google Scholar 

  2. Maxam, A. M.; Gilbert, W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. 1977, 74, 560–564.

    Article  CAS  Google Scholar 

  3. Inglis, A. S. Review. Chemical procedures for C-terminal sequencing of peptides and proteins. Anal. Biochem. 1991, 195, 183–196.

    Article  CAS  Google Scholar 

  4. Stark, G. Cleavage at cysteine after cyanylation. Methods Enzymol. 1977, 47, 129–131.

    Article  CAS  Google Scholar 

  5. Bornstein, P.; Balian, G. Cleavage at Asn-Gly bonds with hydroxylamine. Methods Enzymol. 1977, 47, 132–144.

    Article  CAS  Google Scholar 

  6. Fontana, A.; Dalzoppo, D.; Grandi, C.; Zambonin, M. Cleavage at tryptophan with o-iodosobenzoic acid. Methods Enzymol. 1983, 91, 311–317.

    Article  CAS  Google Scholar 

  7. Inglis, A. S. Cleavage at aspartic acid. Methods Enzymol. 1983, 91, 324–334.

    Article  CAS  Google Scholar 

  8. Kamo, M.; Tsugita, A. Specific cleavage of amino side chains of serine and threonine in peptides and proteins with S-ethyltrifluorothioacetate vapor. Eur. J. Biochem. 1998, 255, 162–171.

    Article  CAS  Google Scholar 

  9. Kawakami, T.; Kamo, M.; Tsugita, A. Bond-specific chemical cleavages of peptides and proteins with perfluoric acid vapors: Novel peptide bond cleavages of glycyl-threonine, the amino side of serine residues and the carboxyl side of aspartic acid residues. J. Biochem. 1997, 121, 68–76.

    CAS  Google Scholar 

  10. Vestling, M. M.; Kelly, M. A.; Fenselau, C. Optimization by mass spectrometry of a tryptophan-specific protein cleavage reaction. Rapid Commun. Mass Spectrom. 1994, 8, 786–790.

    Article  CAS  Google Scholar 

  11. Glocker, M. O.; Borchers, C.; Przbylski, M. Molecular characterization of surface topology in protein tertiary structures by amino-acylation and mass spectrometric peptide mapping. Bioconj. Chem. 1994, 5, 583–590.

    Article  CAS  Google Scholar 

  12. Suckau, D.; Mak, M.; Przybylski, M. Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc. Natl. Acad. Sci. 1992, 89, 5630–5634.

    Article  CAS  Google Scholar 

  13. Kim, I.-H.; Rodgers, G. P. In vivo footprinting using N-ethyl, N-nitrosourea: Improved resolution of the DNA— protein interactions in the human gamma-globin gene promoter region. Anal. Biochem. 1997, 254, 1–8.

    Article  CAS  Google Scholar 

  14. Sasse-Dwight, S.; Gralla, J. D. Footprinting protein-DNA complexes in vivo. Methods Enzymol. 1991, 208, 146–168.

    Article  CAS  Google Scholar 

  15. Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299–3201.

    Article  CAS  Google Scholar 

  16. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64–71.

    Article  CAS  Google Scholar 

  17. Knapp, D. P. Chemical derivatization for mass spectrometry. Methods Enzymol. 1990, 193, 314–329.

    Article  CAS  Google Scholar 

  18. Anderegg, R. J. Derivatization in mass spectrometry: Strategies for controlling fragmentation. Mass Spectrom. Rev. 1988, 7, 395–424.

    Article  CAS  Google Scholar 

  19. Guan, Z.; Campbell, V. L.; Kaude, D. A. Charge state assignment from Schiff-Base adducts in low resolution electrospray mass spectra of protein mixtures and dissociation products. J. Mass Spectrom. 1995, 30, 119–123.

    Article  CAS  Google Scholar 

  20. Le Blanc, J. C. Y.; Siu, K. W. M.; Guevremont, R. Electrospray mass spectrometric study of protein-ketone equilibria in solution. Anal. Chem. 1994, 66, 3289–3296.

    Article  Google Scholar 

  21. Tsugita, A.; Takamoto, K.; Kamo, M.; Iwadate, H. C-terminal sequencing of protein—A novel partial acid hydrolysis and analysis by mass spectrometry. Eur. J. Biochem. 1992, 206, 691–696.

    Article  CAS  Google Scholar 

  22. Chait, B. T.; Wang, R.; Beavis, R. C.; Kent, S. B. H. Protein ladder sequencing. Science 1993, 262, 89–92.

    Article  CAS  Google Scholar 

  23. Bartlet-Jones, M.; Jeffery, W. A.; Hansen, H. F.; Pappin, D. J. Peptide ladder sequencing by mass spectrometry using a novel, volatile degradation reagent. Rapid Commun. Mass Spectrom. 1994, 8, 737–742.

    Article  CAS  Google Scholar 

  24. Summerfield, S. G.; Bolgar, M. S.; Gaskell, S. J. Promotion and stabilization of b1 ions in peptide phenylthiocarbamoyl derivatives: Analogies with condensed-phase chemistry. J. Mass Spectrom. 1997, 32, 225–231.

    Article  CAS  Google Scholar 

  25. Stults, J. T.; Lai, J.; McCune, S.; Wetzel, R. Simplification of high-energy collision spectra of peptides by amino-terminal derivatization. Anal. Chem. 1993, 65, 1703–1708.

    Article  CAS  Google Scholar 

  26. Cardenas, M. S.; van der Heeft, E.; de Jong, A. P. J. M. On-line derivatization of peptides for improved analysis by microcolumn liquid chromatography coupled with electrospray ionization-tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1271–1278.

    Article  CAS  Google Scholar 

  27. Miyagi, M.; Nakao, M.; Nakazawa, T.; Kato, I.; Tsunasawa, S. A novel derivatization method with 5-bromonicotinic acid N-hydroxysuccinimide for determination of the amino acid sequences of peptides. Rapid Commun. Mass Spectrom. 1998, 12, 603–608.

    Article  CAS  Google Scholar 

  28. O’Hair, R. A. J. Designer reactions: Biomolecules in the gas phase. Chem. Australia 1998, September Issue, 50–53.

  29. Reid, G. E.; O’Hair, R. A. J.; Styles, M. L.; McFadyen, W. D.; Simpson, R. J. Gas phase ion-molecule reactions in a modified ion trap: H/D exchange of non-covalent complexes and coordinatively unsaturated platinum complexes. Rapid Commun. Mass Spectrom. 1998, 12, 1701–1708.

    Article  CAS  Google Scholar 

  30. Reid, G. E.; Simpson, R. J.; O’Hair, R. A. J. Probing the fragmentation reactions of protonated glycine oligomers via multistage mass spectrometry and gas phase H/D exchange in a modified ion trap. Int. J. Mass Spectrom. 1999, 190/191, 209–230.

    Article  CAS  Google Scholar 

  31. Harrison, A. G. The gas-phase basicities and proton affinities of amino acids and peptides. Mass Spectrom. Rev. 1997, 16, 201–217.

    Article  CAS  Google Scholar 

  32. Williams, E. R. Proton Transfer Reactivity of Large Multiply Charged Ions. J. Mass Spectrom. 1996, 31, 831–842.

    Article  CAS  Google Scholar 

  33. Green, M. K.; Lebrilla, C. B. Ion-molecule reactions as probes of gas-phase structures of peptides and proteins. Mass Spectrom. Rev. 1997, 16, 53–71.

    Article  CAS  Google Scholar 

  34. Gur, E. H.; de Koning, L. J.; Nibbering, N. M. M. The bimolecular gas-phase reaction of protonated alkyldipeptides with acetonylacetone. Int. J. Mass Spectrom. Ion Processes 1997, 167/168, 135–147.

    Article  CAS  Google Scholar 

  35. Stephenson, J. L.; McLuckey, S. A. Gaseous protein cations are amphoteric. J. Am. Chem. Soc. 1997, 119, 1688–1696.

    Article  CAS  Google Scholar 

  36. Stephenson, J. L.; McLuckey, S. A. Counting basic sites in oligopeptides via gas-phase chemistry. Anal. Chem. 1997, 69, 281–285.

    Article  CAS  Google Scholar 

  37. Freitas, M. A.; O’Hair, R. A. J.; Dua, S.; Bowie, J. H. The methoxymethyl cation cleaves peptide bonds in the gas phase. Chem. Commun. 1997, 1409–1410.

  38. O’Hair, R. A. J.; McLuckey, S. A. Trimethylsilyl derivatization of nucleic acid anions in the gas phase. Int. J. Mass Spectrom. Ion Processes 1997, 162, 183–202.

    Article  Google Scholar 

  39. Pykalainen, M.; Vainiotalo, A.; Pakkanen, T. A.; Vainiotalo, P. Ion-molecule reactions of simple amines with carbonyl compounds in the gas phase. An experimental and theoretical study of enamine formation. J. Mass Spectrom. 1996, 31, 716–726.

    Article  CAS  Google Scholar 

  40. Li, X.; Harrison, A. G. Structures of the adduct ions formed in the ammonia chemical ionization of ketones. J. Am. Chem. Soc. 1993, 115, 6327–6332.

    Article  CAS  Google Scholar 

  41. Dayagi, S.; Degani, Y. Methods of formation of the carbon-nitrogen double bond. In The Chemistry of the Carbon-Nitrogen Double Bond; S. Patai, Ed.; Interscience: London, 1970, pp 61–147.

    Chapter  Google Scholar 

  42. Hruby, V. J.; Yamashiro, D.; du Vigneaud, V. The structures of acetone-oxytocin with studies on the reactions of acetone with various peptides. J. Am. Chem. Soc. 1968, 90, 7106–7110.

    Article  CAS  Google Scholar 

  43. Hruby, V. J.; du Vigneaud, V. The detection of a Schiff base intermediate in the formation of acetone-oxytocin. J. Am. Chem. Soc. 1969, 91, 3624–3626.

    Article  CAS  Google Scholar 

  44. Cardinaux, F.; Brenner, M. N,N’-Alkylidenpeptide: Peptidsynthese-neben-produkte bei einwirkung von carbonylverbindungen. Helv. Chim. Acta 1973, 56, 339–347.

    Article  CAS  Google Scholar 

  45. Nicholls, R.; de Jersey, J.; Worrall, S.; Wilce, P. Modification of proteins and other biological molecules by acetaldehyde: Adduct structure and significance. Int. J. Biochem. 1992, 24, 1899–1906.

    Article  CAS  Google Scholar 

  46. Panetta, C. A.; Resh-Imam, M. The condensation of aldehydes and ketones with dipeptides. J. Org. Chem. 1972, 37, 302–304.

    Article  CAS  Google Scholar 

  47. Means, G. E. Reductive alkylation of amino groups. Methods Enzymol. 1977, 47, 469–478.

    Article  CAS  Google Scholar 

  48. Jentoft, N.; Dearborn, G. G. Protein labelling by reductive alkylation. Methods Enzymol. 1983, 91, 570–579.

    Article  CAS  Google Scholar 

  49. Reid, G. E.; Simpson, R. J.; O’Hair, R. A. J. A mass spectrometric and ab initio study of the pathways for dehydration of simple glycine and cysteine-containing peptide [M + H] + ions. J. Am. Soc. Mass Spectrom. 1998, 9, 945–956.

    Article  CAS  Google Scholar 

  50. O’Hair, R. A. J.; Styles, M. L.; Reid, G. E. Role of the sulfhydryl group on the gas phase fragmentation reactions of protonated cysteine and cysteine containing peptides. J. Am. Soc. Mass Spectrom. 1998, 9, 1275–1284.

    Article  Google Scholar 

  51. Frisch, M. J.; Gill, P. M. W.; Wong, M. W.; Head-Gordon, M.; Trucks, G. W.; Foresman, J. B.; Schlegal, H. B.; Raghavachari, K.; Robb, M.; Johnson, B. G.; Gonzalez, C.; Defrees, D. J.; Fox, D. J.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Martin, R. L.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 94, Gaussian Inc.: Pittsburgh, PA, 1994.

    Google Scholar 

  52. Hehre, W. J.; Pople, J. A.; Radom, L. Ab Initio Molecular Orbital Theory: Wiley: New York, 1986.

    Google Scholar 

  53. Scott, A. P.; Radom, L. Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiemperical scale factors. J. Phys. Chem. 1996, 100, 16502–16513.

    Article  CAS  Google Scholar 

  54. Dongre, A. R.; Jones, J. L.; Somogyi, A.; Wysocki, V. H. Influence of peptide composition, gas-phase basicity, and chemical modification of fragmentation efficiency: Evidence for the mobile proton model. J. Am. Chem. Soc. 1996, 118, 8365–8374.

    Article  CAS  Google Scholar 

  55. Wyttenbach, T.; Bushnell, J. E.; Bowers, M. T. Salt bridge structures in the absence of solvent? The case for the oligoglycines. J. Am. Chem. Soc. 1998, 120, 5098–5103.

    Article  CAS  Google Scholar 

  56. Hunter, E. P. L.; Lias, S. G. Evaluated gas phase basicities and proton affinities of molecules: An update. J. Phys. Chem. Ref. Data 1998, 27, 413–457.

    Article  CAS  Google Scholar 

  57. Ellenberger, M. R.; Dixon, D. A.; Farneth, W. E. Proton affinities and the sites of protonation of enamines in the gas phase. J. Am. Chem. Soc. 1981, 103, 5377–5382.

    Article  CAS  Google Scholar 

  58. van Dongen, W. D.; Heerma, W.; Haverkamp, J.; de Koster, C. G. The b1-fragment ion from protonated glycine is an electrostatically-bound ion/molecule complex of CH2=NH2+ and CO. Rapid Commun. Mass Spectrom. 1996, 10, 1237–1239.

    Article  Google Scholar 

  59. Yalcin, T.; Khouw, C.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. Why are B ions stable species in peptide spectra? J. Am. Soc. Mass Spectrom. 1995, 6, 1165–1174.

    Article  CAS  Google Scholar 

  60. Yalcin, T.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. The structure and fragmentation of Bn (n equal to or greater than 3) ions in peptide spectra. J. Am. Soc. Mass Spectrom. 1996, 7, 233–242.

    Article  CAS  Google Scholar 

  61. Paizs, B.; Lendvay, G.; Vekey, K.; Suhai, S. Formation of b2+ ions from protonated peptides: An ab initio study. Rapid. Commun. Mass Spectrom. 1999, 13, 525–533.

    Article  CAS  Google Scholar 

  62. Zhang, K.; Zimmerman, D. M.; Chung-Phillips, A.; Cassady, C. J. Experimental and ab initio studies of the gas-phase basicities of polyglycines. J. Am. Chem. Soc. 1993, 115, 10812–10822.

    Article  CAS  Google Scholar 

  63. Cassady, C. J.; Carr, S. R.; Zhang, K.; Chung-Phillips, A. Experimental and ab initio studies on protonations of alanine and small peptides of alanine and glycine. J. Org. Chem. 1995, 60, 1704–1712.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. J. O’Hair.

Additional information

Dedicated to the memory of Professor R. R. Squires, an outstanding proponent of gas phase ion chemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Hair, R.A.J., Reid, G.E. Derivatization of protonated peptides via gas phase ion—molecule reactions with acetone. J Am Soc Mass Spectrom 11, 244–256 (2000). https://doi.org/10.1016/S1044-0305(99)00142-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(99)00142-7

Keywords

Navigation