Skip to main content
Log in

Modeling deuterium exchange behavior of ERK2 using pepsin mapping to probe secondary structure

  • Focus: H/D Exchange Of Proteins In Solution
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Recently, mass spectrometry has been applied to studies of hydrogen exchange of backbone amides, allowing analysis of large proteins at physiological concentrations. Low resolution spatial information is obtained by digesting proteins after exchange into D2O, using electrospray ionization liquid chromatography/mass spectrometry (ESI-LC/MS) to measure deuteration by mass increases of resulting peptides. This study develops modeling paradigms to increase resolution, using the signal transduction kinase ERK2 as a prototype for larger, less stable proteins. In-exchange data for peptides were analyzed by nonlinear least squares and a maximum entropy method, distinguishing amides into fast, intermediate, slow, and nonexchanging classes. Analysis of completely nonexchanging or in-exchanging peptides and peptides with sequence overlaps showed that nonexchanging amides were generally hydrogen bonded and sterically constrained or buried ≥2.2 Å from the protein surface, while fast exchanging hydrogens were generally exposed at the protein surface. In order to more fully understand the intermediate and slow exchanging classes, an empirical model was developed by analyzing published exchange rates in cytochrome c. The model correlated protection factors with a combined dependency on surface accessibility, hydrogen bond length, and position of residues from alpha helix ends. Together with analysis of partial proteolytic products, the derived rules for exchange allowed modeling of exchange behavior of peptides. Substantial deviation from the predicted rates in some cases suggested a role for conformational freedom in regulating fast and intermediate exchanging amides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarke, J.; Itzhaki, L. S. Hydrogen exchange and protein folding. Curr. Op. Struct. Biol. 1998, 8, 112–118.

    Article  CAS  Google Scholar 

  2. Englander, S. W.; Sosnick, T. R.; Englander, J. J.; Mayne, L. Mechanisms and uses of hydrogen exchange. Curr. Op. Struct. Biol. 1996, 6, 18–23.

    Article  CAS  Google Scholar 

  3. Englander, S. W.; Kallenbach, N. R. Structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 1983, 16, 521–655.

    Article  CAS  Google Scholar 

  4. Gregory, R. B.; Rosenberg, A. Protein conformational dynamics measured by hydrogen isotope exchange techniques. Meth. Enzymol. 1986, 131, 448–508.

    Article  CAS  Google Scholar 

  5. Englander, S. W.; Mayne, L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Ann. Rev. Biophys. Biomol. Struct. 1992, 21, 243–265.

    Article  CAS  Google Scholar 

  6. Smith, D. L.; Deng, Y.; Zhang, Z. Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J. Mass Spectrom. 1997, 32, 135–146.

    Article  CAS  Google Scholar 

  7. Smith, D. L. Local structure and dynamics in proteins characterized by hydrogen exchange and mass spectrometry. Biochemistry 1998, 63, 285–293.

    CAS  Google Scholar 

  8. Zhang, Z.; Smith, D. L. Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Prot. Sci. 1993, 2, 522–531.

    Article  CAS  Google Scholar 

  9. Zhang, Z.; Post, C. B.; Smith, D. L. Amide hydrogen exchange determined by mass spectrometry: application to rabbit muscle aldolase. Biochemistry 1996, 35, 779–791.

    Article  CAS  Google Scholar 

  10. Johnson, R. S.; Walsh, K. A. Mass spectrometric measurement of protein amide hydrogen exchange rates of apo- and holo-myoglobin. Prot. Sci. 1994, 3, 2411–2418.

    Article  CAS  Google Scholar 

  11. Mandell, J. G.; Falick, A. M.; Komives, E. A. Measurement of amide hydrogen exchange by MALDI-TOF mass spectrometry. Anal. Chem. 1998, 19, 3987–3995.

    Article  Google Scholar 

  12. Milne, J. S.; Mayne, L.; Roder, H.; Wand, A. J.; Englander, S. W. Determinants of protein hydrogen exchange studied in equine cytochrome c. Prot. Sci. 1998, 7, 739–745.

    Article  CAS  Google Scholar 

  13. Dharmasiri, K.; Smith, D. L. Mass spectrometric determination of isotopic exchange rates of amide hydrogens located on the surfaces of proteins. Anal. Chem. 1996, 68, 2340–2344.

    Article  CAS  Google Scholar 

  14. Bai, Y.; Milne, J. S.; Mayne, L.; Englander, S. W. Primary structure effects on peptide group hydrogen exchange. Proteins 1993, 17, 75–86.

    Article  CAS  Google Scholar 

  15. Molday, R. S.; Englander, S. W.; Kallen, R. G. Primary structure effects on peptide group hydrogen exchange. Biochemistry 1972, 11, 150–158.

    Article  CAS  Google Scholar 

  16. Neira, J. L.; Itzhaki, L. S.; Otzen, D. E.; Davis, B.; Fersht, A. R. Hydrogen exchange in chymotrypsin inhibitor 2 probed by mutagenesis. J. Mol. Biol. 1997, 270, 99–110.

    Article  CAS  Google Scholar 

  17. Zhang, Z.; Li, W.; Logan, T. M.; Li, M.; Marshall, A. G. Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR. Prot. Sci. 1997, 6, 2203–2217.

    Article  CAS  Google Scholar 

  18. Wand, A. J.; Roder, H.; Englander, S. W. Two-dimensional 1H NMR studies of cytochrome c: Hydrogen exchange in the N-terminal helix. Biochemistry 1986, 25, 1107–1114.

    Article  CAS  Google Scholar 

  19. Lumry, R.; Rosenberg, A. The mobile defect hypothesis of protein function. Col. Int. CNRS L’Eau Syst. Biol. 1975, 246, 55–63.

    Google Scholar 

  20. Richards, F. M. Packing defects, cavities, volume fluctuations, and access to the interior of proteins. Carlsberg Res. Comm. 1979, 44, 47–63.

    Article  CAS  Google Scholar 

  21. Bai, Y.; Sosnick, T. R.; Mayne, L.; Englander, S. W. Protein folding intermediates: native-state hydrogen exchange. Science 1995, 269, 192–197.

    Article  CAS  Google Scholar 

  22. Kragelund, B. B.; Knudsen, J.; Poulsen, F. M. Local perturbations by ligand binding of hydrogen deuterium exchange kinetics in a four-helix bundle protein, acyl coenzyme A binding protein (ACBP). J. Mol. Biol. 1995, 250, 695–706.

    Article  CAS  Google Scholar 

  23. Arrington, C. B.; Robertson, A. D. Microsecond protein folding kinetics from native-state hydrogen exchange. Biochemistry 1997, 36, 8686–8691.

    Article  CAS  Google Scholar 

  24. Yi, Q.; Baker, D. Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR. Prot. Sci. 1996, 5, 1060–1066.

    Article  CAS  Google Scholar 

  25. Miller, D. W.; Dill, K. A. A statistical mechanical model for hydrogen exchange in globular proteins. Prot. Sci. 1995, 4, 1860–1873.

    Article  CAS  Google Scholar 

  26. Taylor, S. S.; Radzio-Andzelm, E. Three protein kinases structures define a common motif. Structure 1994, 2, 345–355.

    Article  CAS  Google Scholar 

  27. Lewis, T. S.; Shapiro, P. S.; Ahn, N. G. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 1998, 74, 49–139.

    Article  CAS  Google Scholar 

  28. Zhang, F.; Strand, A.; Robbins, D.; Cobb, M. H.; Goldsmith, E. J. Atomic structure of the MAP kinase ERK2 at 2. 3 A resolution. Nature 1994, 367, 704–711.

    Article  CAS  Google Scholar 

  29. Robbins, D. J.; Zhen, E.; Owaki, H.; Vanderbilt, C. A.; Ebert, D.; Geppert, T. D.; Cobb, M. H. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J. Biol. Chem. 1993, 268, 5097–5106.

    CAS  Google Scholar 

  30. Resing, K. A.; Ahn, N. G. Deuterium exchange mass spectrometry as a probe of protein kinase activation. Analysis of wild-type and constitutively active mutants of MAP kinase kinase-1. Biochemistry 1998, 37, 463–475.

    Article  CAS  Google Scholar 

  31. Zhang, Z.; Guan, S.; Marshall, A. G. Enhancement of the effective resolution of mass spectra of high-mass biomolecules by maximum entropy-based deconvolution to eliminate the isotopic natural abundance distribution. J. Am. Soc. Mass Spectrom. 1997, 8, 659–670.

    Article  CAS  Google Scholar 

  32. Verma, S.; Pomerantz, S. C.; Sethi, S. K.; McCloskey, J. A. Fast atom bombardment mass spectrometry following hydrogen-deuterium exchange. Anal. Chem. 1986, 58, 2892–2902.

    Google Scholar 

  33. Bushnell, G. W.; Louie, G. V.; Brayer, G. D. High resolution three dimensional structure of horse heart cytochrome c. J. Mol. Biol. 1990, 213, 585–595.

    Article  Google Scholar 

  34. Connolly, M. L. Solvent-acessible surfaces of proteins and nucleic acids. Science 1983, 221, 709–713.

    Article  CAS  Google Scholar 

  35. Tuchsen, E.; Woodward, C. Hydrogen exchange kinetics of surface peptide amides in bovine pancreatic trypsin inhibitor. J. Mol. Biol. 1987, 193, 793–802

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katheryn A. Resing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resing, K.A., Hoofnagle, A.N. & Ahn, N.G. Modeling deuterium exchange behavior of ERK2 using pepsin mapping to probe secondary structure. J Am Soc Mass Spectrom 10, 685–702 (1999). https://doi.org/10.1016/S1044-0305(99)00037-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(99)00037-9

Keywords

Navigation