Skip to main content
Log in

Differentiation of isomeric photomodified oligodeoxynucleotides by fragmentation of ions produced by matrix-assisted laser desorption ionization and electrospray ionization

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

UV irradiation of oligodeoxynucleotides at 254 nm generates several different types of DNA photoproducts, including cis-syn cyclobutane pyrimidine dimers, pyrimidine[6-4] pyrimidone photoproducts and their Dewar valence isomers, and thymine-adenine photoproducts (TA*). Studies of photoproducts in oligodeoxynucleotides require the development of suitable structure determination methods such as mass spectrometry. In an earlier study (Vollmer et al. Int. J. Mass Spectrom. Ion Processes 1997, 165/166, 487–496), we showed that fast atom bombardment and tandem sector mass spectrometry can be used to locate the site of photomodification and identify most of the photoproducts of d(TATTAT). One goal of the present research was to expand the method to the more sensitive electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) methods. A second goal was to test the generality of the methods by investigating not only the photoproducts of d(TATTAT) but also those of three other oligodeoxynucleotides, d(GTATTAT), d(GGCTATAA), and d(AATTAA). The photoproducts of these sequences were separated by HPLC and gave characteristic fragment ions in postsource decompositions of MALDI-produced ions and collisionally activated decompositions of ESI-produced ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jagger, J. In Photochemistry and Photobiology of Nucleic Acids, Vol. 2; Wang, S. Y., Ed.; Academic: New York, 1976; p 184.

    Google Scholar 

  2. Cadet, J. Vigny, P. In Bioorganic Photochemistry, Vol. 1; Morrison, H., Ed.; Wiley: New York, 1990; p 1.

    Google Scholar 

  3. Taylor, J.-S. Unraveling the Molecular Pathway from Sunlight to Skin Cancer. Acc. Chem. Res. 1994, 27, 76–82.

    Article  CAS  Google Scholar 

  4. Taylor, J.-S. DNA, Sunlight and Skin Cancer. Int. Union Pure Appl. Chem. 1995, 67, 183–190.

    Article  CAS  Google Scholar 

  5. McCloskey, J. A.; Crain, P. F. Progress in Mass Spectrometry of Nucleic Acid Constituents: Analysis of Xenobiotic Modifications and Measurements of High Mass. Int. J. Mass Spectrom. Ion Processes 1992, 118/119, 593–615.

    Article  Google Scholar 

  6. Crain, P. F. Mass Spectrometric Techniques in Nucleic Acid Research. Mass Spectrom. Rev. 1990, 9, 505–554.

    Article  CAS  Google Scholar 

  7. Cerny, R. L.; Gross, M. L.; Grotjahn, L. Fast Atom Bombardment Combined with Tandem Mass Spectrometry for the Study of Dinucleotides. Anal. Biochem. 1986, 156, 424–435.

    Article  CAS  Google Scholar 

  8. McNeal, C. J. The role of ion-induced mass spectrometry in modern biochemical problems. Nucl. Instrum. Methods Phys. Res. 1982, 198, 139–146.

    Article  CAS  Google Scholar 

  9. Little, D. P.; McLafferty, F. W. Sequencing 50-mer DNAs Using Electrospray Tandem Mass Spectrometry and Complementary Fragmentation Methods. J. Am. Chem. Soc. 1995, 117, 6783–6784.

    Article  CAS  Google Scholar 

  10. McLuckey, S. A.; Habibi-Goudarzi, S. Decomposition of Multiply Charged Oligonucleotide Anions. J. Am. Chem. Soc. 1993, 115, 12085–12095.

    Article  CAS  Google Scholar 

  11. McLuckey, S. A.; Van Berkel, G. J.; Glish, G. L. Tandem Mass Spectrometry of Small, Multiply Charged Oligonucleotides. J. Am. Soc. Mass Spectrom. 1992, 3, 60–70.

    Article  CAS  Google Scholar 

  12. Gentil, E.; Banoub, J. Characterization and Fragmentation of Isomeric Self-complementary DNA Oligomers by Electrospray Tandem Mass Spectrometry. J. Mass Spectrom. 1996, 31, 83–94.

    Article  CAS  Google Scholar 

  13. Stemmler, E. A.; Buchanan, M. V.; Hurst, G. B.; Hettich, R. L. Analysis of Modified Oligonucleotides by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry. Anal. Chem. 1995, 67, 2924–2930.

    Article  CAS  Google Scholar 

  14. Marzilli, L. A.; Wang, D.; Kobertz, W. R.; Essigmann, J. M.; Vouros, P. Mass Spectral Identification and Positional Mapping of Aflatoxin B1-guanine Adducts in Oligonucleotides. J. Am. Soc. Mass Spectrom. 1998, 9, 677–682.

    Article  Google Scholar 

  15. Iannitti, P.; Sheil, M. M.; Wickham, M. M. High Sensitivity and Fragmentation Specificity in the Analysis of Drug-DNA Adducts by Electrospray Tandem Mass Spectrometry. J. Am. Chem. Soc. 1997, 119, 1490–1491.

    Article  CAS  Google Scholar 

  16. McLuckey, S. A.; Habibi-Goudarzi, S. Ion Trap Mass Spectrometry Applied to Small Multiply Charged Oligonucleotides with a Modified Base. J. Am. Soc. Mass Spectrom. 1994, 5, 740–747.

    Article  CAS  Google Scholar 

  17. Fenselau, C.; Wang, S. Y. Mass Spectra of some Dimeric Photoproducts of Pyrimidines. Tetrahedron 1969, 25, 2853–2863.

    Article  CAS  Google Scholar 

  18. Hettich, R. L.; Buchanan, M. V.; Ho, C. H. Characterization of Photo-induced Pyrimidine Cyclobutane Dimers by Laser Desorption Fourier Transform Mass Spectrometry. Biomed. Environ. Mass Spectrom. 1989, 19, 55–62.

    Article  Google Scholar 

  19. Ramsey, R. S.; Van Berkel, G. J.; McLuckey, S. A.; Glish, G. L. Determination of Pyrimidine Cyclobutane Dimers by Electrospray Ionization/Ion Trap Mass Spectrometry. Biol. Mass Spectrom. 1990, 21, 347–352.

    Article  Google Scholar 

  20. Vollmer, D.; Zhao, X.; Taylor, J.-S.; Gross, M. L. Structure Determination of Isomeric Hexadeoxynucleotide Photoproducts by High-field NMR and Fast Atom Bombardment/tandem Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 1997, 165/166, 487–496.

    Article  CAS  Google Scholar 

  21. Zhu, Y. F.; Cheng, C. N.; Taranenko, N. I.; Allman, S. L.; Martin, S. A.; Haff, L.; Chen, C. H. The Study of 2,3,4-trihydroxyacetophenone and 2,4,6-trihydroxyacetophenone as Matrices for DNA Detection in Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 383–388.

    Article  CAS  Google Scholar 

  22. Rosario, M. ; Domingues, M. ; Nemirovskiy, O. V. ; Graca, M. ; Marques, S. ; Vale, Carla A. M. ; Graca Neves, M. ; Cavaleiro, J. A. S. ; Ferrer-Correia, A. J. ; Gross, M. L. Do Charge-Remote Fragmentations Occur under MALDI-PSD and MALDI-CAD conditions? J. Am. Soc. Mass Spectrom., in press.

  23. Wang, Z.; Wan, K. X.; Ramanathan, R.; Taylor, J.-S.; Gross, M. L. Structure and Fragmentation Mechanisms of Isomeric T-rich Oligodeoxynucleotides: a Comparison of Four Tandem Mass Spectrometric Methods. J. Am. Soc. Mass Spectrom. 1998, 9, 683–691.

    Article  CAS  Google Scholar 

  24. Bose, S. N.; Davies, R. J. H.; Sethi, S. K.; McCloskey, J. A. Formation of an Adenine-thymine Photoadduct in the Deoxydinucleoside Monophosphate d(TpA) and in DNA. Science 1983, 220, 723–725.

    Article  CAS  Google Scholar 

  25. Taylor, J.-S.; Cohrs, M. P. DNA, Light and Dewar Pyrimidinones: The Structure and Biological Significance of TpT3. J. Am. Chem. Soc. 1987, 109, 2834–2835.

    Article  CAS  Google Scholar 

  26. Taylor, J.-S.; Lu, H. F.; Kotyk, J. J. Quantitative Conversion of the (6-4) Photoproduct of TpdC to a Dewar Photoproduct upon Exposure to Simulated Sunlight. Photochem. Photobiol. 1990, 51, 161–167.

    Article  CAS  Google Scholar 

  27. Habibi-Goudarzi, S.; McLuckey, S. A. Ion trap Collisional Activation of the Deprotonated Deoxymononucleoside and Deoxydinucleoside Monophosphates. J. Am. Soc. Mass Spectrom. 1995, 6, 102–113.

    Article  CAS  Google Scholar 

  28. Greco, F.; Liguori, A.; Sindona, G.; Uccella, N. Gas-phase Proton Affinity of Deoxyribonucleosides and Related Nucleobases by Fast Atom Bombardment Tandem Mass Spectrometry. J. Am. Chem. Soc. 1990, 112, 9092–9096.

    Article  CAS  Google Scholar 

  29. Smets, J.; Houben, L.; Schoone, K.; Maes, G.; Adamowicz, L. Multiple Site Proton Affinities of Methylated Nucleic Acid Bases. Chem. Phys. Lett. 1996, 262, 789–796.

    Article  CAS  Google Scholar 

  30. Smith, C.; Taylor, J.-S. Preparation and Characterization of a Set of Oligonucleotide 49-mers Containing Site-Specific Cis-Syn, Trans-Syn-I, (6-4) and Dewar Photoproducts of TpT Sites. J. Biol. Chem. 1993, 268, 11143–11151.

    CAS  Google Scholar 

  31. Kumar, S.; Joshi, P.; Sharma, N.; Bose, S.; Davies, R.; Takeda, N.; McCloskey, J. Adenine Photodimerization in Deoxyadenylate Sequences: Elucidation of the Mechanism through Structural Studies of a Major d(ApA) Photoproduct. Nucl. Acids Res. 1991, 19, 2841–2847.

    Article  CAS  Google Scholar 

  32. Lay, J.; Gross, M.; Zwinselman, J.; Nibbering, N. A. Field Ionization and Collisionally activated Dissociation/Charge Stripping Study of some [C9H10] Ions. Org. Mass Spectrom. 1983, 18, 16–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Taylor, J.S. & Gross, M.L. Differentiation of isomeric photomodified oligodeoxynucleotides by fragmentation of ions produced by matrix-assisted laser desorption ionization and electrospray ionization. J Am Soc Mass Spectrom 10, 329–338 (1999). https://doi.org/10.1016/S1044-0305(98)00158-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00158-5

Keywords

Navigation