Skip to main content
Log in

A mass spectrometric and ab initio study of the pathways for dehydration of simple glycine and cysteine-containing peptide [M+H]+ ions

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The gas phase fragmentation reactions of the [M+H]+ and [M+H−H2O]+ ions of glycylglycine, glycylcysteine, N-acetylglycine, N-acetylcysteine, their corresponding methyl esters, as well as several other related model systems have been examined by electrospray ionization (ESI) tandem mass spectrometry (MSn) using triple quadrupole and quadrupole ion trap mass spectrometers. Two discrete gas phase fragmentation pathways for the loss of water from glycine-containing peptides, corresponding to retro-Koch and retro-Ritter type reactions were observed. Two pathways were also observed for the loss of water from C-terminal cysteine-containing peptides: a retro-Koch type reaction and an intramolecular nucleophilic attack at the carbonyl of the amide bond by the cysteinyl side chain thiol. Various intermediates involved in these reactions, derived from the [M+H−H2O]+ ions of N-formylglycine and N-formylcysteine, were modeled using ab initio calculations at the MP2(FC)/6-31G*//HF/6-31G* level of theory. These calculations indicate that: (i) the retro-Koch reaction product is predicted to be more stable than the product from the retro-Ritter reaction for N-formylglycine, and (ii) the intramolecular nucleophilic attack product is preferred over the retro-Koch and retro-Ritter reaction products for N-formylcysteine. The results from these ab initio calculations are in good agreement with the experimentally determined ion abundances for these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Hair, R. A. J.; Freitas, M. A.; Gronert, S.; Schmidt, J. A. R.; Williams, T. D. J. Org. Chem. 1995, 60, 1990.

    Article  Google Scholar 

  2. Freitas, M. A.; O’Hair, R. A. J.; Williams, T. D. J. Org. Chem. 1997, 62, 6112.

    Article  CAS  Google Scholar 

  3. Freitas, M. A.; O’Hair, R. A. J.; Dua, S.; Bowie, J. Chem Commun. 1997, 1409.

  4. Busch, K. L.; Glish, G. L.; McLuckey S. A. Mass Spectrometry/Mass Spectrometry. Techniques & Applications of Tandem Mass Spectrometry, VCH: New York, 1988.

    Google Scholar 

  5. O’Hair, R. A. J. Eur. Mass Spectrom. 1997, 3, 390.

    Article  Google Scholar 

  6. Roepstorff, P.; Fohlman, J. Biol. Mass Spectrom. 1994, 11, 601.

    Article  Google Scholar 

  7. Biemann, K. Acc. Chem. Res. 1994, 27, 370.

    Article  CAS  Google Scholar 

  8. McLuckey, S. A.; Van Berkel, G. J.; Glish, G. L. J. Am. Soc. Mass. Spectrom. 1992, 3, 60.

    Article  CAS  Google Scholar 

  9. For some reviews on the gas phase sequencing of peptides and proteins via MS/MS see: Biemann, K. In Mass Spectrometry, Methods in Enzymology, Volume 193; McCloskey, J. A., Ed.; Academic: New York, 1990.

    Google Scholar 

  10. Hunt, D. F. In Mass Spectrometry of Biological Materials, Practical Spectroscopy Series, Volume 8; McEwen, C. N.; Larsen, B. S., Eds.; Dekker: New York, 1990.

    Google Scholar 

  11. Papayannopoulos, I. A. Mass Spectrom. Rev. 1995, 14, 49.

    Article  CAS  Google Scholar 

  12. For a more general review of MS/MS applications in biological problems, see Favretto, D.; Traldi, P. Mass Spectrom. Rev. 1993, 12, 313.

    Article  CAS  Google Scholar 

  13. Ballard, K. D.; Gaskell, S. J. J. Am. Soc. Mass Spectrom. 1993, 4, 477.

    Article  CAS  Google Scholar 

  14. March, J. Advanced Organic Chemistry. Reactions, Mechanisms, and Structure, 4th ed.; Wiley: New York, 1992.

    Google Scholar 

  15. for the Koch reaction see p 808.

  16. For the Ritter reaction see p 970.

  17. Yalcin, T.; Khouw, C.; Csizmadia, I.G.; Peterson, M.R.; Harrison, A.G. J. Am. Soc. Mass Spectrom. 1995, 6, 1165.

    Article  CAS  Google Scholar 

  18. Yalcin, T.; Csizmadia, I.G.; Peterson, M.R.; Harrison, A.G. J. Am. Soc. Mass Spectrom. 1996, 7, 233.

    Article  CAS  Google Scholar 

  19. Arnott, D.; Kottmeier, K.; Yates, N.; Shabanowitz, J.; Hunt, D.F. Proceedings of the 42nd ASMS Conference on Mass Spectrometry; Chicago, 1994, p 470.

  20. Summerfield, S.G.; Bolgar, M.S.; Gaskell, S.J. J. Mass Spectrom. 1997, 32, 225.

    Article  CAS  Google Scholar 

  21. The first ab initio study of the instability of the b 1 ion of glycine (Lien, M.H.; Hopkinson, A.C., J. Org. Chem. 1988, 53, 2150) seems to have been ignored by many workers.

    Article  CAS  Google Scholar 

  22. Tsang, C.W.; Harrison, A.G. J. Am. Chem. Soc. 1976, 98, 1301.

    Article  CAS  Google Scholar 

  23. Kulik, W.; Heerma, W. Biomed. Mass Spectrom. 1988, 15, 419.

    Article  CAS  Google Scholar 

  24. Bouchonnet, S.; Denhez, J.-P.; Hoppilliard, Y.; Mauriac, C. Anal. Chem. 1992, 64, 753.

    Article  Google Scholar 

  25. Bouchoux, G.; Bourcier, S.; Hoppilliard, Y.; Mauriac, C. Org. Mass Spectrom. 1993, 28, 1064.

    Article  CAS  Google Scholar 

  26. Beranova, S.; Cai, J.; Wesdemiotis, C. J. Am. Chem. Soc. 1995, 117, 9492.

    Article  CAS  Google Scholar 

  27. Dookeran, N.N.; Yalcin, T.; Harrison, A.G. J. Mass Spectrom. 1996, 31, 500.

    Article  CAS  Google Scholar 

  28. van Dongen, W.D.; Heerma, W.; Haverkamp, J.; de Koster, C.G. Rapid Commun. Mass Spectrom. 1996, 10, 1237.

    Article  Google Scholar 

  29. Klassen, J.S.; Kerbarle, P. J. Am. Chem. Soc. 1997, 119, 6552.

    Article  CAS  Google Scholar 

  30. For an alternative mechanism for the loss of [C, H2, O2] from amino acids see: Meot-Ner, M.; Field, F.H. J. Am. Chem. Soc. 1973, 95, 7207.

    Article  CAS  Google Scholar 

  31. van Dongen, W. D.; de Koster, C. G.; Heerma, W.; Haverkamp, J. Rapid Commun. Mass Spectrom. 1995, 9, 845.

    Article  Google Scholar 

  32. Lin, H.Y.; Ridge, D.P.; Uggerud, E.; Vulpius, T. J. Am. Chem. Soc. 1994, 116, 2996.

    Article  CAS  Google Scholar 

  33. Zhang, K.; Zimmerman, A.; Chung-Phillips, A.; Cassady, C.J. J. Am. Chem. Soc. 1993, 115, 812.

    Google Scholar 

  34. Finnigan-MAT. 355 River Oaks Parkway, San Jose, CA.

  35. Wavefunction, Inc. 18401 Von Karman Ave, Irvine, CA 92612.

  36. Hariharan, P.C.; Pople, J.A. Theor. Chim. Acta 1973, 28, 213.

    Article  CAS  Google Scholar 

  37. Dill, J.D.; Pople, J.A. J. Chem. Phys. 1975, 62, 2921.

    Article  CAS  Google Scholar 

  38. Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. J. Chem. Phys. 1982, 77, 3654.

    Article  CAS  Google Scholar 

  39. To maintain consistency with previous work, a scaling factor of 0.9 was used. A recent comprehensive paper by Scott and Radom suggests that a more suitable scaling factor for HF/6–31G* frequencies is 0.8953.(Scott, A.P.; Radom, L. J. Phys. Chem. 1996, 100, 16502).

    Article  CAS  Google Scholar 

  40. Gronert, S.; O’Hair, R.A.J. J. Am. Chem. Soc. 1995, 117, 2071.

    Article  CAS  Google Scholar 

  41. McCormack, A.L.; Somogyi, A.; Dongre, A.R.; Wysocki, V.H. Anal. Chem. 1993, 65, 2859.

    Article  CAS  Google Scholar 

  42. Somogyi, A.; Wysocki, V.H.; Mayer, I. J. Am. Soc. Mass Spectrom. 1994, 5, 704.

    Article  CAS  Google Scholar 

  43. Vekey, K.; Gomony, A. Rapid Commun. Mass Spectrom. 1996, 10, 1485.

    Article  CAS  Google Scholar 

  44. Dongre, A.R.; Jones, J.L.; Somogyi, A.; Wysocki, V.H. J. Am. Soc. Mass Spectrom. 1996, 118, 8365.

    CAS  Google Scholar 

  45. Harrison, A.G.; Yalcin, T. Int. J. Mass Spectrom. Ion Processes 1997, 165/166, 339 (and references cited therein).

    Article  CAS  Google Scholar 

  46. Gur, E. H.; de Koning, L. J.; Nibbering, N. M. M. Int. J. Mass Spectrom. Ion Processes 1997, 167/168, 135.

    Article  CAS  Google Scholar 

  47. Moritz, R. L.; Eddes, J. S.; Reid, G. E.; Simpson, R. J. Electrophoresis 1996, 17, 907.

    Article  CAS  Google Scholar 

  48. Hall, S. C.; Smith, D. M.; Masiarz, F. R.; Soo, V. W.; Tran, H. M.; Epstein, L. B.; Burlingame, A. L. Proc. Natl. Acad. Sci. USA 1993, 90, 1927.

    Article  CAS  Google Scholar 

  49. Eskinja, M.; Zollner, P.; Linnemayr, K.; Mak, M.; Schmid, E. R. Rapid Commun. Mass Spectrom. 1997, 11, 931.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. J. O’Hair.

Additional information

Dedicated to the memory of Professor B.S. Freiser, a true innovator in gas phase ion chemistry.

Gas Phase Ion Chemistry of Biomolecules, Part 10. For part 9 see [3].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, G.E., Simpson, R.J. & O’Hair, R.A.J. A mass spectrometric and ab initio study of the pathways for dehydration of simple glycine and cysteine-containing peptide [M+H]+ ions. J Am Soc Mass Spectrom 9, 945–956 (1998). https://doi.org/10.1016/S1044-0305(98)00068-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00068-3

Keywords

Navigation