Skip to main content
Log in

Simple geometry gridless ion mirror

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

A gridless variation of the cylindrical ion mirror has been designed to create an electric field that is nonlinear in the axial direction and nearly homogeneous in the radial direction. The designs may include one or two chambers that consist of truncated cones. This new design concept yields ion mirrors with improved energy focusing over conventional single-field and multiple-field mirrors. Conventionally, ion mirrors with nonlinear field gradient use multiple diaphragm electrodes to which distinct voltages are applied. In this work, optimized nonlinear field distributions are achieved through shaping only two or three electrodes and applying only one or two voltages on the electrodes. The designs presented here offer high resolving power and low ion dispersion. SIMION simulations of performance from the ion source to the detector demonstrate resolving powers of 11 000 and 1750 for ions with kinetic energy variations of 7.5% and 23.6%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J.; Enke, C. G.J. Am. Soc. Mass Spectrom. 2000,11, 759–764.

    Article  CAS  Google Scholar 

  2. Karaev, V. I.; Mamyrin, B. A.; Shmikk, D. V.; Zagulin, V. A.Sov. Phys. Tech. Phys. 1972,16, 1177–1179.

    Google Scholar 

  3. Mamyrin, B. A.; Karaev, V. I.; Shmikk, D. V.; Zagulin, V. A.Sov. Phys. JETP 1973,37, 45–48.

    Google Scholar 

  4. Mamyrin, B. A.; Shmikk, D. V.Sov. Phys. JETP 1979,49, 762–764.

    Google Scholar 

  5. Gohl, W.; Kutscher, R.; Laue, H-J.; Wollnik, H.Int. J. Mass Spectrom. Ion Phys. 1983,48, 411–414.

    Article  CAS  Google Scholar 

  6. Grix, R.; Kutscher, R.; Li, G.; Gruner, U.; Wollnik, H.Rapid Commun. Mass Spectrom. 1988,2, 83–85.

    Article  CAS  Google Scholar 

  7. Berger, C.Int. J. Mass Spectrom. Ion Phys. 1983,46, 63–66.

    Article  Google Scholar 

  8. Frey, R.; Weiss, G.; Kaminski, H.; Schlag, E. W. Z.Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1985,40, 1349–1350.

    Google Scholar 

  9. Walter, K.; Boesl, U.; Schlag, E. W.Int. J. Mass Spectrom. Ion Processes 1986,71, 309–313.

    Article  CAS  Google Scholar 

  10. Kutscher, G.; Grix, R.; Li, G.; Wollnik, H.Int. J. Mass Spectrom. Ion Processes 1991,103, 117–128.

    Article  CAS  Google Scholar 

  11. Bergmann, T.; Martin, T. P.; Schaber, H.Rev. Sci. Instrum. 1990,61, 2592–2600.

    Article  CAS  Google Scholar 

  12. Cornish, T. J.; Cotter, R.J. Anal. Chem. 1997,69, 4615–4618.

    Article  CAS  Google Scholar 

  13. Yoshida, Y.U. S. Patent 4, 625, 112, 1984.

    Google Scholar 

  14. Cornish, T. J.; Cotter, R.J. Rapid Commun. Mass Spectrom. 1993,7, 1037–1140.

    Article  CAS  Google Scholar 

  15. Cornish, T. J.; Cotter, R.J. Rapid Commun. Mass Spectrom. 1994,8, 781–785.

    Article  CAS  Google Scholar 

  16. Ji, Q.; Davenport, M. R.; Enke, C. G.; Holland, J. F.J. Am. Soc. Mass Spectrom. 1996,7, 1009–1017.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christie G. Enke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Gardner, B.D. & Enke, C.G. Simple geometry gridless ion mirror. J. Am. Soc. Spectrom. 11, 765–769 (2000). https://doi.org/10.1016/S1044-0305(00)00146-X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00146-X

Keywords

Navigation