Skip to main content
Log in

Beam and image experiment of beam deflection electron gun for distributed X-ray sources

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative system concepts in X-ray and computer tomography. This paper proposes a novel electron beam focusing, shaping, and deflection electron gun for distributed X-ray sources. The electron gun uses a dispenser cathode as an electron emitter, a mesh grid to control emission current, and two electrostatic lenses for beam shaping, focusing, and deflection. Novel focusing and deflecting electrodes were designed to increase the number of focal spots in the distributed source. Two identical half-rectangle opening electrodes are controlled by adjusting the potential of the two electrodes to control the electron beam trajectory, and then, multifocal spots are obtained on the anode target. The electron gun can increase the spatial density of the distributed X-ray sources, thereby improving the image quality. The beam experimental results show that the focal spot sizes of the deflected (deflected amplitude 10.5 mm) and non-deflected electron beams at full width at half maximum are 0.80 mm × 0.50 mm and 0.55 mm × 0.40 mm, respectively (anode voltage 160 kV; beam current 30 mA). The imaging experimental results demonstrate the excellent spatial resolution and time resolution of an imaging system built with the sources, which has an excellent imaging effect on a field-programmable gate array chip and a rotating metal disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. R.A. Robb, E.A. Hoffman, L.J. Sinak et al., High-speed three-dimensional X-ray computed tomography: the dynamic spatial reconstructor. Proc. IEEE 71, 3 (1983). https://doi.org/10.1109/PROC.1983.12589

    Article  Google Scholar 

  2. Y.F. Yang, D.H. Zhang, K.D. Huang et al., Three-dimensional weighting reconstruction algorithm for circular cone-beam CT under large scan angles. Nucl. Sci. Tech. 27, 116 (2017). https://doi.org/10.1007/s41365-017-0262-3

    Article  Google Scholar 

  3. G. Wang, T.H. Lin, P.C. Cheng et al., A general cone beam reconstruction algorithm. IEEE Trans. Med. Imaging 12, 486–496 (1993). https://doi.org/10.1109/42.241876

    Article  Google Scholar 

  4. C. Zhang, X.D. Pan, H.J. Shang et al., Improvements to conventional X-ray tube-based cone-beam computed tomography system. Nucl. Sci. Tech. 29, 43 (2018). https://doi.org/10.1007/s41365-018-0370-8

    Article  Google Scholar 

  5. W.A. Kalender, Thin-section three-dimensional spiral CT: is isotropic imaging possible. Radiology 197, 578–580 (1995). https://doi.org/10.1148/radiology.197.3.7480719

    Article  Google Scholar 

  6. P. Michael, B. D. Man, B. Kristiaan, Stationary computed tomography system and method. U.S. Patent 7 280 631, Oct. 9, 2007

  7. V.B. Neculaes, P.M. Edic, M. Frontera et al., Multisource X-ray and CT: lessons learned and future outlook. IEEE Access 2, 1568–1585 (2014). https://doi.org/10.1109/ACCESS.2014.2363949

    Article  Google Scholar 

  8. G. Wang, H.Y. Yu, B.D. Man, An outlook on X-ray CT research and development. Med. Phys. 35, 1051–1064 (2008). https://doi.org/10.1118/1.2836950

    Article  Google Scholar 

  9. R. Behling, Medical X-ray sources now and for the future. Nucl. Instrum. Methods A. 873, 43–50 (2017). https://doi.org/10.1016/j.nima.2017.05.038

    Article  Google Scholar 

  10. C.A. Spindt, A thin-film field-emission cathode. J. Appl. Phys. 39, 3504 (1968). https://doi.org/10.1063/1.1656810

    Article  Google Scholar 

  11. C.A. Spindt, I. Brodie, L. Humphrey et al., Physical properties of thin-film field emission cathodes with molybdenum cones. J. Appl. Phys. 47, 5248 (1976). https://doi.org/10.1063/1.322600

    Article  Google Scholar 

  12. P.R. Schwoebel, J.M. Boone, J. Shao, Studies of a prototype linear stationary X-ray source for tomosynthesis imaging. Phys. Med. Biol. 59, 2393–2413 (2014). https://doi.org/10.1088/0031-9155/59/10/2393

    Article  Google Scholar 

  13. X.S. Wang, Q.Q. Li, J. Xie et al., Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 9, 3137–3141 (2009). https://doi.org/10.1021/nl901260b

    Article  Google Scholar 

  14. X. Qian, A. Tucker, E. Gidcumb et al., High resolution stationary digital breast tomosynthesis using distributed carbon nanotube X-ray source array. Med. Phys. 39, 2090–2099 (2012). https://doi.org/10.1118/1.3694667

    Article  Google Scholar 

  15. G. Yang, R. Rajaram, G.H. Cao et al., Stationary digital breast tomosynthesis system with a multi-beam field emission X-ray source array, in Proceedings of SPIE. 6913, Medical Imaging 2008: Physics of Medical Imaging, 69131A (2008). http://dx.doi.org/10.1117/12.770622

  16. F. Sprenger, X. Calderon, Y. Cheng et al., Distributed source X-ray tube technology for tomosynthesis imaging, in Proceedings of SPIE, 7622, Medical Imaging 2010: Physics of Medical Imaging, 76225M (2010). https://doi.org/10.1117/12.844586

  17. J.M. Bonard, C. Klinke, K.A. Dean et al., Degradation and failure of carbon nanotube field emitters. Phys. Rev. B. 67, 115406 (2003). https://doi.org/10.1103/PhysRevB.67.115406

    Article  Google Scholar 

  18. X.C. Xu, J. Kim, P. Laganis et al., A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission X-ray tube. Med. Phys. 38, 5500–5508 (2011). https://doi.org/10.1118/1.3634043

    Article  Google Scholar 

  19. V.B. Neculaes, Y. Zou, P. Zavodszky et al., Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecture. Phys. Plasmas 21, 056702 (2014). https://doi.org/10.1063/1.4872033

    Article  Google Scholar 

  20. K. Frutschy, B.D. Man, P. Edic et al., X-ray Multisource for Medical Imaging, in Proceeding of SPIE. 7258, Medical Imaging 2009, Physics of Medical Imaging; 725822 (2009). https://doi.org/10.1117/12.812043

  21. V.B. Neculaes, A. Caiafa, Y. Cao et al., Multisource inverse-geometry CT. Part II. X-ray source design and prototype. Med. Phys. 43, 4617–4627 (2016). https://doi.org/10.1118/1.4954847

    Article  Google Scholar 

  22. L. Lanca, A. Silva, Digital Imaging Systems for Plain Radiography (Springer, New York, 2013), pp. 25–30. https://doi.org/10.1007/978-1-4614-5067-2

    Book  Google Scholar 

  23. Z. Zhou, F. Gao, H. Zhao et al., Effect of background trends removal on noise power spectrum measurements in digital X-ray imaging, in Proceeding of SPIE. 7890, Advanced Biomedical and Clinical Diagnostic Systems IX; 78901F (2011). http://dx.doi.org/10.1117/12.871053

  24. J.T. Dobbins III, E. Samei, N.T. Ranger et al., Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med. Phys. 33, 1466–1475 (2006). https://doi.org/10.1118/1.2188819

    Article  Google Scholar 

  25. J.T. Bushberg, J.A. Seibert, E.M. Leidholdt et al., The Essential Physics of Medical Imaging, 2nd edn. (Lippincott Williams and Wilkins, Philadelphia, 2002), pp. 31–44. https://doi.org/10.1007/s00259-002-1073-1

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Xiang Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, CJ., Tang, CX., Huang, WH. et al. Beam and image experiment of beam deflection electron gun for distributed X-ray sources. NUCL SCI TECH 30, 50 (2019). https://doi.org/10.1007/s41365-019-0561-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0561-y

Keywords

Navigation