Skip to main content
Log in

Time-of-flight secondary ion mass spectrometry of matrix-diluted oligo- and polypeptides bombarded with slow and fast projectiles: Positive and negative matrix and analyte ion yields, background signals, and sample aging

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Human angiotensin II, chain B of bovine insulin, and porcine insulin were determined by time-of-flight secondary ion mass spectrometry under impact of ∼25 keV Xe+ and SF +5 ion beams and ∼100 MeV 252Cf fission fragments. Matrix-embedded samples, dissolved in a large surplus of α-cyano-4-hydroxycinnamic acid, were prepared by nebulizer spray deposition, neat samples by the droplet technique. It is shown that the status of the sample can be assessed by evaluating the matrix-specific features of the mass spectra. The beneficial effect of matrix isolation was small for angiotensin but large for the insulin samples, which did not show parent peaks from neat material. Negative ion yields under SF +5 impact were up to a factor of 50 higher than with Xe+. For positive secondary ions, the enhancement was much smaller. The mass spectra produced by slow ion beams or fast fission fragments were qualitatively similar. Quantitative differences include the following: with fast projectiles the yields were about 10–30 times higher than with slow ions, but similar for negative ion emission under SF +5 bombardment; the analyte-to-matrix yield ratios were higher with slow ions and up to 250 times higher than the molar analyte concentration; for analyte ions the peak-to-background ratios were higher using slow projectiles; the fraction of carbon-rich collisionally formed molecular ions was much higher with fast projectiles. Sample aging in vacuum for up to five weeks strongly reduced the yield of protonated analyte molecules ejected by slow ion impact, but not of deprotonated species. Hence protonation seems to correlate with sample “wetness” or the presence of volatile proton-donating additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karas, M.; Bachmann, D.; Hillenkamp, F. Anal. Chem. 1985, 57, 2935–2939.

    Article  CAS  Google Scholar 

  2. Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Processes 1987, 78, 53–68.

    Article  CAS  Google Scholar 

  3. Karas, M. Mat. Fys. Medd. Dan Vid. Selsk. 1993, 43, 623–641.

    Google Scholar 

  4. Bahr, U.; Karas, M.; Hillenkamp, F. Fresenius J. Anal. Chem. 1994, 348, 783–791.

    Article  CAS  Google Scholar 

  5. Strupat, K.; Karas, M.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Processes 1991, 111, 89–102.

    Article  CAS  Google Scholar 

  6. Beavis, R. C.; Chaudhary, T.; Chait, B. T. Org. Mass Spectrom. 1992, 27, 156–158.

    Article  CAS  Google Scholar 

  7. Danis, P. O.; Karr, D. E.; Mayer, F.; Holle, A.; Watson, C. H. Org. Mass Spectrom. 1992, 27, 843–846.

    Article  CAS  Google Scholar 

  8. Kirpekar, F.; Nordhoff, E.; Kristiansen, K.; Roepstorff, P.; Lezius, A.; Hahner, S.; Karas, M.; Hillenkamp, F. Nucl. Acids Res. 1994, 22, 3866–3870.

    Article  CAS  Google Scholar 

  9. Nelson, R. W.; Dogruel, D.; Williams, P. Rapid Commun. Mass Spectrom. 1995, 9, 625.

    Article  CAS  Google Scholar 

  10. Fenselau, C. Anal. Chem. 1997, 69, 661A-665A.

    CAS  Google Scholar 

  11. Wu, K. J.; Odom, R. W. Anal. Chem. 1998, 70, 456A-461A.

    CAS  Google Scholar 

  12. Liu, L. K.; Busch, K. L.; Cooks, R. G. Anal. Chem. 1981, 53, 109–113.

    Article  CAS  Google Scholar 

  13. Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Taylor, A. N. J. Chem. Soc., Chem. Commun. 1981, 325.

  14. Barber, M.; Bordoli, R. S.; Elliot, G. J.; Sedgwick, R. D.; Taylor, A. N. Anal. Chem. 1982, 54, 645A-657A.

    Article  CAS  Google Scholar 

  15. Sundqvist, B. U. R. In Sputtering by Particle Bombardment III; Behrisch, R.; Wittmaack, K., Eds., Springer: Berlin, 1991; Chap 5.

    Google Scholar 

  16. Aberth, W.; Straub, K. M.; Burlingame, A. L. Anal. Chem. 1982, 54, 2029–2034.

    Article  CAS  Google Scholar 

  17. Cotter, R. J. Anal. Chem. 1984, 56, 2594–2596.

    Article  CAS  Google Scholar 

  18. Gillen, G.; Christiansen, J. W.; Tsong, I. S. T.; Kumball, B.; Williams, P. Rapid Commun. Mass Spectrom. 1988, 2, 67–70.

    Article  CAS  Google Scholar 

  19. Wolf, B.; Macfarlane, R. D. J. Am. Soc. Mass Spectrom. 1991, 2, 29–32.

    Article  CAS  Google Scholar 

  20. Macfarlane, R. D.; Torgerson, D. F. Science 1976, 191, 920–925.

    Article  CAS  Google Scholar 

  21. Tuszynski, W. Int. J. Mass Spectrom. Ion Processes 1993, 126, 151–156.

    Article  CAS  Google Scholar 

  22. Jonsson, G. P.; Hedin, A. B.; Hakansson, P. L.; Sundqvist, B. U. R.; Säve, B. G. S.; Nielsen, P. F.; Roepstorff, P.; Johansson, K.-K.; Kamensky, I.; Lindberg, M. S. L. Anal. Chem. 1986, 58, 1084–1087.

    Article  CAS  Google Scholar 

  23. Metzger, J. O.; Woisch, R.; Tuszyinski, W.; Angermann, R.; Puls, J. Rapid Commun. Mass Spectrom. 1993, 7, 1041–1047.

    Article  CAS  Google Scholar 

  24. Tuszynski, W.; Angermann, R.; Metzger, J. O.; Woisch, R. Nucl. Instrum. Methods Phys. Res. B 1994, 88, 184–190.

    Article  CAS  Google Scholar 

  25. Metzger, J. O.; Woisch, R.; Tuszynski, W.; Angermann, R. Fresenius J. Anal. Chem. 1994, 349, 473–474.

    Article  CAS  Google Scholar 

  26. Wu, K. J.; Odom, R. W. Anal. Chem. 1996, 68, 873–882.

    Article  CAS  Google Scholar 

  27. Ens, W.; Standing, K. G.; Chait, B. T.; Field, F. H. Anal. Chem. 1981, 53, 1241–1244.

    Article  CAS  Google Scholar 

  28. Ens, W. Mat. Fys. Medd. Dan. Vid. Selsk. 1993, 43, 155–207.

    Google Scholar 

  29. Szymczak, W.; Wittmaack, K. Nucl. Instrum. Methods Phys. Res. B 1994, 88, 149–153.

    Article  CAS  Google Scholar 

  30. Le Beyec, Y. Int. J. Mass Spectrom. Ion Processes 1998, 174, 101–117.

    Article  Google Scholar 

  31. Tuszynski, W.; Angermann, R.; Hillmann, F.; Maier-Schwartz, K. In Ion Formation from Organic Solids; Hedin, A.; Sundqvist, B. U. R., Benninghoven, A., Eds., Wiley: Chichester, 1990; pp 73–77.

    Google Scholar 

  32. Szymczak, W.; Wessels, J.; Kataoka, Y.; Wittmaack, K. In Secondary Ion Mass Spectrometry SIMS XI; Gillen, G., Lareau, R., Bennett, J., Stevie, F., Eds., Wiley: Chichester, 1998; pp 493–496.

    Google Scholar 

  33. Andersen, H. H. Mat. Fys. Medd. Dan. Vid. Selsk. 1993, 43, 127–153.

    Google Scholar 

  34. Della Negra, S.; Depauw, J.; Joret, H.; Le Beyec, Y. Phys. Rev. Lett. 1988, 60, 946–949.

    Article  Google Scholar 

  35. Hilf, E. R.; Tuszynski, W.; Curdes, B.; Curdes, J.; Wagner, M.; Wien, K. Int. J. Mass Spectrom. Ion Processes 1993, 126, 101–114.

    Article  CAS  Google Scholar 

  36. Wagner, M.; Wien, K.; Curdes, B.; Hilf, E. R. Nucl. Instrum. Methods Phys. Res. B 1993, 82, 362–378.

    Article  CAS  Google Scholar 

  37. Betts, R. L.; da Silveira, E. F.; Schweikart, E. A. Int. J. Mass Spectrom. Ion Processes 1995, 145, 9–23.

    Article  CAS  Google Scholar 

  38. Mahoney, J. F.; Perel, J.; Lee, T. D.; Martino, P. A.; Williams, P. J. Am. Soc. Mass Spectrom. 1992, 3, 311–317.

    Article  CAS  Google Scholar 

  39. Biersack, J. P.; Haggmark, L. G. Nucl. Instrum. Methods 1980, 174, 257–269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Wittmaack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmaack, K., Szymczak, W., Hoheisel, G. et al. Time-of-flight secondary ion mass spectrometry of matrix-diluted oligo- and polypeptides bombarded with slow and fast projectiles: Positive and negative matrix and analyte ion yields, background signals, and sample aging. J Am Soc Mass Spectrom 11, 553–563 (2000). https://doi.org/10.1016/S1044-0305(00)00110-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00110-0

Keywords

Navigation