Skip to main content
Log in

Single isolated droplets with net charge as a source of ions

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

A levitation device for charged particles has been used to position a single isolated droplet at a time at atmospheric pressure near the sampling orifice of a vacuum chamber. Following a brief desolvation period (550 ms), a series of coulomb fission events were initiated. Several atmospheric pressure electrode designs were evaluated with respect to guiding the progeny droplets/ions, to the sampling orifice. The best design tested consisted of a series of four annular electrodes of decreasing radius positioned above the levitation ring electrodes, and, on average, 40 ions were counted per single isolated droplet. The ion utilization (charge detected versus charge in the original droplet) with this electrode design has been estimated to be 5 × 10−6, a substantial improvement over the current utilization measured to be ≤1 × 10−9 with a conventional electrospray ion source using the same vacuum apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demirev, P. A.; Ho, Y.-P.; Ryzhov, V.; Fenselau, C. Microorganism identification by mass spectrometry and protein database searchers. Anal. Chem. 1999, 71, 2732–2738.

    Article  CAS  Google Scholar 

  2. Reilly, P. T. A.; Gieray, R. A.; Whitten, W. B.; Ramsey, J. M. Real-time characterization of the oranic composition and size of individual diesel engine smoke particles. Environ. Sci. Technol. 1997, 32, 2672–2679.

    Article  Google Scholar 

  3. Liu, D.-Y.; Rutherford, D.; Kinsey, M.; Prather, K. A. Real-time monitoring of pyrotechnically derived aerosol particles in the troposphere. Anal. Chem. 1997, 69, 1808–1814.

    Article  CAS  Google Scholar 

  4. Olesik, J. W. Investigating the fate of individual sample droplets in inductively coupled plasmas. Appl. Spectrosc. 1997, 51, 158A-175A.

    Article  CAS  Google Scholar 

  5. Smith, R. D.; Cheng, X.; Bruce, J. E.; Hofstadler, S. A.; Anderson, G. A. Trapping, detection and reaction of very large single molecular ions by mass spectrometry. Nature 1994, 369, 137–139.

    Article  CAS  Google Scholar 

  6. Yamashita, M.; Fenn, J. B. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984, 88, 4451–4459.

    Article  CAS  Google Scholar 

  7. Wilm, M.; Mann, M. Electrospray and Taylor-Cone theory, Dole’s beam of macromolecules at last? Int. J. Mass Spectrom. Ion Processes 1994, 136, 167–180.

    Article  CAS  Google Scholar 

  8. Wilm, M.; Mann, M. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 1996, 68, 1–8.

    Article  CAS  Google Scholar 

  9. Figeys, D.; Ning, Y.; Aebersold, R. A microfabricated device for rapid protein identification by microelectrospray ion trap mass spectrometry. Anal. Chem. 1997, 69, 3153–3160.

    Article  CAS  Google Scholar 

  10. Zhang, B.; Liu, H.; Karger, B. L.; Foret, F. Microfabricated devices for capillary electrophoresis-electrospray mass spectrometry. Anal. Chem. 1999, 71, 3258–3264.

    Article  CAS  Google Scholar 

  11. Shaffer, S. A.; Tang, K.; Anderson, G. A.; Prior, D. C.; Udseth, H. R.; Smith, R. D. A novel ion funnel for focussing ions at elevated pressure using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1813–1817.

    Article  CAS  Google Scholar 

  12. Shaffer, S. A.; Tolmachev, A.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D. Characterization of an improved electrodynamic ion funnel interface for electrospray ionization mass spectrometry. Anal. Chem. 1999, 71, 2957–2964.

    Article  CAS  Google Scholar 

  13. Hager, D. B.; Dovichi, N. J. Behavior of microscopic liquid droplets near a strong electrostatic field: Droplet electrospray. Anal. Chem. 1994, 66, 1593–1594.

    Article  CAS  Google Scholar 

  14. Fletcher, H. My work with Millikan on the oil-drop experiment. Phys. Today 1982, 35, No. 6, 43–47.

    Article  Google Scholar 

  15. Spjut, R. E.; Sarofim, A. F.; Longwell, J. P. Laser heating and particle temperature measurement in an electrodynamic balance. Langmuir 1985, 1, 355–360.

    Article  CAS  Google Scholar 

  16. Rhim, W.-K.; Chung, K. S.; Barber, D.; Man, K. F.; Gutt, G.; Rulison, A.; Spjut, R. E. An electrostatic levitator for high-temperature containerless materials processing in 1-g. Rev. Sci. Instrum. 1993, 64, 2961–2970.

    Article  CAS  Google Scholar 

  17. Winter, H.; Ortjohann, H. W. Simple demonstration of storing macroscopic particles in a “Paul Trap”. Am. J. Phys. 1991, 59, 807–813.

    Article  Google Scholar 

  18. Davis, E. J.; Buehler, M. F.; Ward, T. L. The double-ring electrodynamic balance for microparticle characterization. Rev. Sci. Instrum. 1990, 61, 1281–1288.

    Article  CAS  Google Scholar 

  19. Doyle, A.; Moffett, D. R.; Vonnegut, B. Behaviour of evaporating electrically charged droplets. J. Colloid Sci. 1964, 19, 136–143.

    Article  CAS  Google Scholar 

  20. Taflin, D. C.; Ward, T. L.; Davis, E. J. Electrified droplet fission and the Rayleigh limit. Langmuir 1989, 5, 376–384.

    Article  CAS  Google Scholar 

  21. Arnold, S.; Hessel, N. Photoemission from single electrodynamically levitated microparticles. Rev. Sci. Instrum. 1985, 56, 2066–2069.

    Article  CAS  Google Scholar 

  22. Arnold, S.; Folan, L. M. Fluorescence spectrometer for a single electrodynamically levitated microparticle. Rev. Sci. Instrum. 1986, 57, 2250–2253.

    Article  CAS  Google Scholar 

  23. Arnold, S.; Folan, L. M. Energy transfer and the photon lifetime within an aerosol particle. Opt. Lett. 1989, 14, 387–389.

    Article  CAS  Google Scholar 

  24. Arnold, S.; Liu, C. T.; Whitten, W. B.; Ramsey, J. M. Room-temperature microparticle-based persistent spectral hole burning memory. Opt. Lett. 1991, 16, 420–422.

    Article  CAS  Google Scholar 

  25. Li, W.; Rassat, S. D.; Foss, W. R.; Davis, E. J. Formation and properties of aerocolloidal TiO2-coated microspheres produced by alkoxide droplet reaction. J. Colloid Interface Sci. 1994, 162, 267–278.

    Article  CAS  Google Scholar 

  26. Barnes, M. D.; Ng, K. C.; Whitten, W. B.; Ramsey, J. M. Detection of single Rhodamine 6G molecules in levitated microdroplets. Anal. Chem. 1993, 65, 2360–2365.

    Article  CAS  Google Scholar 

  27. Yang, M.; Dale, J. M.; Whitten, W. B.; Ramsey, J. M. Laser desorption mass spectrometry of a levitated single microparticle in a quadrupole ion trap. Anal. Chem. 1995, 67, 1021–1025.

    Article  CAS  Google Scholar 

  28. Galley, P. J.; Hieftje, G. M. Technique for producing capillaries with reproducible orifice diameters for uniform droplet generation. Appl. Spectrosc. 1992, 46, 1460–1463.

    Article  CAS  Google Scholar 

  29. Davis, E. J.; Ray, A. K. Single aerosol particle size and mass measurement using an electrodynamic balance. J. Colloid Interface Sci. 1980, 75, 566–576.

    Article  CAS  Google Scholar 

  30. Davies, C. N. Evaporation of airborne droplets. In Fundamentals of Aerosol Science; Shaw, D. T., Ed; Wiley: New York, 1978.

    Google Scholar 

  31. Kebarle, P.; Tang, L. From ions in solution to ions in the gas phase—the mechanism of electrospray mass spectrometry. Anal. Chem. 1993, 65, 972A-986A.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George R. Agnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X., Agnes, G.R. Single isolated droplets with net charge as a source of ions. J Am Soc Mass Spectrom 11, 393–399 (2000). https://doi.org/10.1016/S1044-0305(00)00105-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00105-7

Keywords

Navigation