Skip to main content
Log in

Effect of Swirling Desolvation Gas Flow in an Atmospheric Pressure Ion Source

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

A numerical study is performed to examine the effect of introducing a swirling desolvation gas flow on the flow transport characteristics in an electrospray and an atmospheric pressure chemical ionization (APCI) system. An ion source having three coaxial tubes is considered: (1) an inner capillary tube to inject the liquid sample, (2) a center coaxial tube to provide a room temperature gas flow to nebulize the liquid, referred to as the nebulizing gas flow, and (3) an outer coaxial tube having a converging exit to supply a high temperature gas for droplet desolvation, referred to as the desolvation gas flow. The results show that a swirling desolvation gas flow reduces the dispersion of the nebulizing gas and suppresses turbulent diffusion. The effect of swirling desolvation flow on the trajectory of a range of droplet sizes emitted from a source is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang, R., Allmendinger, P., Zhu, L., Gröhn, A.J., Wegner, K., Frankevich, V., Zenobi, R.: The role of nebulizer as flow in electrosonic spray ionization (ESSI). J. Am. Soc. Mass Spectrom. 22, 1234–1241 (2011)

    Article  CAS  Google Scholar 

  2. Kebarle, P., Tang, L.: From ions in solution to ions in the gas phase (the mechanism on electrospray mass spectrometry). Report. Anal. Chem. 65(22), 972–986 (1993)

    Google Scholar 

  3. Schumaker, A., Driscoll, S., James, F.: Mixing properties of coaxial jets with large velocity ratios and large inverse density ratios. Phys. Fluids 24, 055101 (2012)

    Article  Google Scholar 

  4. Saiki, Y., Suzuki,Y., Kasagi, N.: Active control of swirling coaxial jet mixing with manipulation of large-scale vortical structures. In: Hanjalić, K., Nagano, Y., Jakirlić, S. (Eds.), Turbulence, Heat and Mass Transfer 6, pp. 1–12, Begell House, Inc., Danbury (2009)

  5. Gupta, A.K., Lilley, D.G., Syred, N.: Swirl flows, p. 475. Abacus Press, Tunbridge Wells, Kent, England (1984)

    Google Scholar 

  6. Ribeiro, M.M., Whitelaw, J.H.: Coaxial jets with and without swirl. J. Fluid Mech. 96(4), 769–795 (1980)

    Article  Google Scholar 

  7. Heitor, M.V., Moireira, A.L.N.: On the analysis of turbulent transport processes in nonreacting multijet burner flows. Exp. Fluids 13, 179–189 (1992)

    Article  CAS  Google Scholar 

  8. Garcia-Villalba, M., Fröhlich, J.: LES of a free annual swirling jet—dependence of coherent structures on a pilot jet and the level of swirl. Int J. Heat Fluid Flow 27, 911–923 (2006)

    Article  CAS  Google Scholar 

  9. Al-Abdeli, Y.M., Masri, A.R.: Recirculation and flow field regimes of unconfined non-reacting swirling flows. Exp. Thermal Fluid Sci. 27, 655–665 (2003)

    Article  Google Scholar 

  10. Yang, Y., Kær, S.K., Yin, C.: Large eddy simulation of Sydney swirl non-reaction jets. Proceedings of the Fifth European Conference on Computational Fluid Dynamics, ECCOMAS CFD, Periera, J.C.F., Sequeira, A. (Eds.) pp. 2–9, Lisbon, Portugal, June 14–17 (2010).

  11. Apte, S.V., Mahesh, K., Moin, P., Oefelein, J.C.: Large-eddy simulation of swirling particle-laden flows in a coaxial jet combustor. Int. J. Multiphase Flow 29, 1311–1331 (2003)

    Article  CAS  Google Scholar 

  12. So, R.M.C., Ahmed, S.A., Mongia, H.C.: Jet characteristics in confined swirling flow. Exp. Fluids 3, 221–230 (1985)

    Article  CAS  Google Scholar 

  13. Fokke, M., Liem, T., Derksen J., Van den Akker, H.: LDA and LIF experiments on the quasi-periodic and complex flow in cyclone. Proceedings of the International Symposium on Applications of Laser Techniques to Fluid Mechanics, pp. 16.4.1–16.4.6, Lisbon, Portugal, July 11–14 (1994).

  14. Vladimirov, V.A., Lugovtsov, B.A., Tarasov, V.F.: Suppression of turbulence in the cores of concentrated vortices. J. Appl. Mech. Tech. Phys. 21(5), 632–637 (1980)

    Article  Google Scholar 

  15. Vladimirov, V.A., Tarasov, V.F.: Structure of turbulence near the core of vortex ring. Dokl. Akad. Nauk SSSR 245(6), 1325–1328 (1979).

  16. Imao, S., Itoh, M., Harada, T.: Turbulent characteristics of the flow in an axially rotating pipe. Int. J. Heat Fluid Flow 17, 444–451 (1996)

    Article  Google Scholar 

  17. Savtchenko, S.: Developing of disturbances in swirl flows of incompressible fluid. Ph.D. Thesis, Tomsk State University (2002).

  18. Bradshow, P.: The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177–191 (1969).

    Article  Google Scholar 

  19. Cotel, A., Breidenthal, R.: Turbulence inside a vortex. Phys. Fluids 11(10), 3026–3029 (1999)

    Article  CAS  Google Scholar 

  20. ANSYS, Inc. 3255 Kifer Road, Santa Clara, CA 95051, U.S.A.

  21. Yakhot, V., Orszag, S.A.: Renormalization-group analysis of turbulence. Phys. Rev. Lett. 57(14), 1722–1724 (1986)

    Article  Google Scholar 

  22. Secchiaroli, A., Ricci, R., Montelpare, S., D'Alessandro, V.: Numerical simulation of turbulent flow in a Ranque-Hilsch vortex tube. Int. J. Heat Mass Transfer 52, 5496–5511 (2009)

    Article  Google Scholar 

  23. Jawarneh, A.M., Tlilan, H., Al-Shyyab, A., Ababneh, A.: Strongly swirling flows in a cylindrical separator. Minerals Eng. 21(5), 366–372 (2008)

    Article  CAS  Google Scholar 

  24. Karagoz, I.: Kaya, F: CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone. Int. Commun. Heat Mass Transfer 34, 1119–1126 (2007)

    Article  CAS  Google Scholar 

  25. Escue, A., Cui. J.: Numerical investigation of swirling pipe flows. In: American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED. Chicago, IL. (2006).

  26. Fernandez de la Mora, J., Rossel-Liompart, J.: Control of the initial droplet diameter and change in electrosprays, and its use for ion production. Proceeding of the ASMS Conference on Mass Spectrometry and Applied Topics; pp. 441–442, Nashville, TN, 19–24 May (1991)

Download references

Acknowledgment

The authors acknowledge support for this research by the Ontario Centre of Excellence (OCE), IONICS Mass Spectrometry Group Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Ashgriz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 101 kb)

ESM 2

(JPEG 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savtchenko, S., Ashgriz, N., Jolliffe, C. et al. Effect of Swirling Desolvation Gas Flow in an Atmospheric Pressure Ion Source. J. Am. Soc. Mass Spectrom. 25, 1549–1556 (2014). https://doi.org/10.1007/s13361-014-0933-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0933-9

Key words

Navigation