Skip to main content
Log in

Fracture morphologies of a hot stamped steel and comparisons with several sheet metals

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Hot stamping has been widely used in car industry to produce safety components. Most existing researches focused on the stamping and quenching process, but less on the mechanical properties of stamped parts. The fracture behaviors of hot stamped boron steel B1500HS have been studied, and other four commonly used sheet metals with different strengths, including Q235, TRIP780, QP980 and MS1300, were also introduced for comparison. Both uniaxial tests and mechanical trimming tests were performed, and the fracture surfaces under different stress states were observed and discussed. The SEM observations showed that the fracture models are closely related to the stress states, i. e., the tensile surfaces have ductile rupture characters while the trimming surfaces have brittle rupture characters. Compared with other steels, the quenched boron steel has smaller dimple size accompanied by shear planes in the tensile surface, and has smaller burnish zone in the trimming surface, and its cutting surface with ‘S’ like shape is also very different with others. Furthermore, two fitted empirical models were derived to describe the quantitative correlations between the average dimple diameter and the steel strength and between the percentage of burnish zone and the steel strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Jha, S. Das, S. Sinha, A. Lodh, A. Haldar, Mater. Sci. Eng. A 561 (2013) 394–402.

    Article  Google Scholar 

  2. H. Karbasian, A. E. Tekkaya, J. Mater. Process. Technol. 210 (2010) 2103–2118.

    Article  Google Scholar 

  3. J. H. Kim, D. Kim, H. Han, F. Barlat, M. G. Lee, Mater. Sci. Eng. A 559 (2013) 222–231.

    Article  Google Scholar 

  4. V. Uthaisangsuk, U. Prahl, W. Bleck, Eng. Fract. Mech. 78 (2011) 469–486.

    Article  Google Scholar 

  5. X. Sun, K. S. Choi, A. Soulami, W. N. Liu, M. A. Khaleel, Mater. Sci. Eng. A 526 (2009) 140–149.

    Article  Google Scholar 

  6. I. Barsoum, J. Faleskog, Int. J. Solids Struct. 44 (2007) 1768–1786.

    Article  Google Scholar 

  7. C. C. Tasan, M. Diehl, D. Yan, F. Roters, Int. J. Plast. 63 (2014) 198–210.

    Article  Google Scholar 

  8. H. So, H. Hoffmann, in: S. D. Yoo (Eds.), Proceedings of the Eu-Korea Conference on Science and Technology, Ekc, Korea, 2008, pp. 315–325.

    Chapter  Google Scholar 

  9. K. Mori, T. Maeno, S. Fuzisaka, J. Mater. Process. Technol. 212 (2012) 534–540.

    Article  Google Scholar 

  10. V. Savic, L. Hector, K. Snavely, J. Coryell, SAE Int. J. Mater. Manuf. 3 (2010) 246–254.

    Article  Google Scholar 

  11. X. H. Han, K. Yang, S. S. Chen, J. Chen, J. Mater. Eng. Perform. 24 (2015) 3845–3851.

    Article  Google Scholar 

  12. X. H. Han, K. Yang, Y. N. Ding, S. L. Tan, J. Chen, J. Mater. Process. Technol. 234 (2016) 158–168.

    Article  Google Scholar 

  13. M. Rossini, P. R. Spena, L. Cortese, P. Matteis, D. Firrao, Mater. Sci. Eng. A 628 (2015) 288–296.

    Article  Google Scholar 

  14. P. X. Liu, Y. S. Zhang, H. Q. Liu, Z. X. Gui, Int. J. Adv. Manuf. Technol. 70 (2014) 1421–1426.

    Article  Google Scholar 

  15. A. Lara, I. Picas, D. Casellas, J. Mater. Process. Technol. 213 (2013) 1908–1919.

    Article  Google Scholar 

  16. K. Mori, T. Maeno, Y. Maruo, CIRP Ann. 61 (2012) 255–258.

    Article  Google Scholar 

  17. H. S. Choi, B. M. Kim, D. H. Kim, D. C. Ko, Int. J. Precis. Eng. Manuf. 15 (2014) 1087–1093.

    Article  Google Scholar 

  18. H. So, D. Fassmann, H. Hoffmann, R. Golle, M. Schaper, J. Mater. Process. Technol. 212 (2012) 437–449.

    Article  Google Scholar 

  19. A. Ghiotti, S. Bruschi, D. Pellegrini, Key Eng. Mater. 473 (2011) 201–208.

    Article  Google Scholar 

  20. H. P. Li, G. Q. Zhao, L. F. He, L. Zhang, J. Mech. Eng. 48 (2012) 21–27.

    Article  Google Scholar 

  21. P. Yang, Y. Y. Fu, F. G. Cui, Z. Q. Sun, Acta Metall. Sin. 37 (2001) 592–600 (in Chinese).

    Google Scholar 

  22. H. Y. Li, Y. J. Zhang, W. J. Zhao, Z. F. Gu, X. C. Li, J. Iron Steel Res. Int. 22 (2015) 256–263.

    Article  Google Scholar 

  23. K. S. Diao, H. M. Jiang, X. P. Chen, Forg. Stamping Technol. 37 (2012) 113–115, 121.

    Google Scholar 

  24. D. C. Wen, Wear 268 (2010) 629–636.

    Article  Google Scholar 

  25. X. G. Liang, T. Jia, J. Z. Jiao, G. D. Wang, X. H. Liu, J. Iron Steel Res. 20 (2008) No. 10, 59–62 (in Chinese).

    Google Scholar 

  26. X. L. Zhao, W. Bayanheshig, W. H. Li, Y. X. Jiang, Y. Song, X. T. Li, S. Jiang, N. Wu, Applied Optics. 55 (2016) 8683–8689.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-hong Han Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Sl., Yang, K., Ding, Yn. et al. Fracture morphologies of a hot stamped steel and comparisons with several sheet metals. J. Iron Steel Res. Int. 24, 634–640 (2017). https://doi.org/10.1016/S1006-706X(17)30095-X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30095-X

Key words

Navigation