Skip to main content
Log in

Numerical analysis of carbon saving potential in a top gas recycling oxygen blast furnace

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Aiming at the current characteristics of blast furnace (BF) process, carbon saving potential of blast furnace was investigated from the perspective of the relationship between degree of direct reduction and carbon consumption. A new relationship chart between carbon consumption and degree of direct reduction, which can reflect more real situation of blast furnace operation, was established. Furthermore, the carbon saving potential of hydrogen-rich oxygen blast furnace (OBF) process was analyzed. Then, the policy implications based on this relationship chart established were suggested. On this basis, the method of improving the carbon saving potential of blast furnace was recycling the top gas with removal of CO2 and H2O or increasing hydrogen in BF gas and full oxygen blast. The results show that the carbon saving potential in traditional blast furnace (TBF) is only 38–56 kg · t−1 while that in OBF is 138 kg · t−1. Theoretically, the lowest carbon consumption of OBF is 261 kg · t−1 and the corresponding degree of direct reduction is 0.04. In addition, the theoretical lowest carbon consumption of hydrogen-rich OBF is 257 kg · t−1. The modeling analysis can be used to estimate the carbon savings potential in new ironmaking process and its related CO2 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Xu, D. Q. Gang, J. Iron Steel Res. Int. 17 (2010) No. 3, 1–7.

    Article  Google Scholar 

  2. Y. P. Shen, H. Cao, Anhui Metallurgy (2015) No. 4, 57–59 (in Chinese).

    Google Scholar 

  3. A. H. Pamm, Calculation and Analysis of Modern Blast Furnace Process, Metallurgical Industry Press, Beijing, 1987.

    Google Scholar 

  4. Y. Jianwei, S. Guolong, K. Cunjiang, Y. Tianjun, Energy 28 (2003) 825–835.

    Article  Google Scholar 

  5. Y. Ohno, M. Matsuura, H. Mitsufuji, Tetsu-to-Hagané 32 (1992) 838–847.

    Google Scholar 

  6. M. S. Chu, H. Nogami, J. Yagi, ISIJ Int. 44 (2004) 2159–2167.

    Article  Google Scholar 

  7. Y. H. Han, J. S. Wang, R. Z. Lan, X. F. She, Q. G. Xue, Ironmak. Steelmak. 39 (2012) 313–317.

    Article  Google Scholar 

  8. R. Z. Lan, J. S. Wang, Y. H. Han, X. F. She, L. T. Wang, Q. G. Xue, J. Iron Steel Res. Int. 19 (2012) No. 9, 13–19.

    Article  Google Scholar 

  9. Y. Ohno, M. Matsuura, Tetsu-to-Hagané 76 (1990) 1262–1269.

    Article  Google Scholar 

  10. J. A. de Castro, H. Nogami, J. Yagi, ISIJ Int. 42 (2002) 1203–1211.

    Article  Google Scholar 

  11. M. Matsuura, T. Furukawa, Y. Ohno, Rev. Metall. 88 (1991) 453–459.

    Article  Google Scholar 

  12. S. Natusui, S. Ueda, H. Nogami, J. Kano, R. Inoue, T. Ariyama, ISIJ Int. 51 (2011) 1410–1417.

    Article  Google Scholar 

  13. S. Natusui, S. Ueda, H. Nogami, J. Kano, R. Inoue, T. Ariyama, ISIJ Int. 51 (2011) 51–58.

    Article  Google Scholar 

  14. Z. L. Liu, Ironmaking Theory and Technology, Chemical Industry Press, Beijing, 2000 (in Chinese).

    Google Scholar 

  15. Y. J. Liang, Y. C. Che, Handbook of Thermodynamic Data for Inorganic Material, Northeastern University Press, Shenyang, 1993 (in Chinese).

  16. D. M. Kundrat, Mater. Trans. B 18 (1986) 705–724.

    Article  Google Scholar 

  17. D. M. Kundrat, Mater. Trans. B 20 (1989) 205–218.

    Article  Google Scholar 

  18. A. Ziebik, K. Lampert, M. Szega, Energy 33 (2008) 199–205.

    Article  Google Scholar 

  19. S. Paul, S. K. Roya, P. K. Sen, Mater. Trans. B 44 (2013) 20–27.

    Article  Google Scholar 

  20. T. Ariyama, M. Sato, ISIJ Int. 46 (2006) 1736–1744.

    Article  Google Scholar 

  21. D. Gielend, Y. Moriguchi, Energy Policy 30 (2002) 849–863.

    Article  Google Scholar 

  22. M. T. Johansson, M. Söderström, Energy 36 (2011) 191–198.

    Article  Google Scholar 

  23. G. Q. Zuo, A. Hirsch, Rev. Metall. 106 (2009) 387–392.

    Article  Google Scholar 

  24. G. Danloy, A. Berthelemot, M. Grant, Rev. Metall. 106 (2009) 1–8.

    Article  Google Scholar 

  25. J. O. Choi, J. G. Kim, in: Proceedings of 7th the International Conference on Carbon Dioxide Utilization, Seoul, Korea, 2004, pp. 153–157.

  26. P. L. Hooey, A. Boden, C. Wang, C. E. Grip, B. Jansson, ISIJ Int. 50 (2010) 924–930.

    Article  Google Scholar 

  27. J. van der Stel, T. Bell, M. Hattink, J. Stuurwold, M. G. Tonks, D. Jameson, in: Proc. of 4th Int. Cong, on the Science and Technology of Ironmaking, ISIJ, Tokyo, 2006, pp. 564–569.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-feng She Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, Xf., An, Xw., Wang, Js. et al. Numerical analysis of carbon saving potential in a top gas recycling oxygen blast furnace. J. Iron Steel Res. Int. 24, 608–616 (2017). https://doi.org/10.1016/S1006-706X(17)30092-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30092-4

Key words

Navigation