Skip to main content
Log in

CO2 emission evaluation and cost analysis of oxygen blast furnace process with sintering flue gas injection

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to achieve ultra-low emissions of SO2 and NOx, the oxygen blast furnace with sintering flue gas injection is presented as a promising novel process. The CO2 emission was examined, and a cost analysis of the process was conducted. The results show that in the cases when the top gas is not circulated (Cases 1–3), and the volume of injected sintering flue gas per ton of hot metal is below about 1250 m3, the total CO2 emissions decrease first and then increase as the oxygen content of the blast increases. When the volume of injected sintering flue gas per ton of hot metal exceeds approximately 1250 m3, the total CO2 emissions gradually decrease. When the recirculating top gas and the vacuum pressure swing adsorption are considered, the benefits of recovered gas can make the ironmaking cost close to or even lower than that of the ordinary blast furnace. Furthermore, the implementation of this approach leads to a substantial reduction in total CO2 emissions, with reductions of 69.13% (Case 4), 70.60% (Case 5), and 71.07% (Case 6), respectively. By integrating previous research and current findings, the reasonable oxygen blast furnace with sintering flue gas injection can not only realize desulfurization and denitrification, but also achieve the goal of reducing CO2 emissions and ironmaking cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Stocker, Climate change 2013: the physical science basis: Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, USA, 2014.

    Google Scholar 

  2. L. Holappa, Metals 10 (2020) 1117. https://doi.org/10.3390/met10091117.

    Article  Google Scholar 

  3. Y. Xian, D. Yu, K. Wang, J. Yu, Z. Huang, Energy Econ. 106 (2022) 105812. https://doi.org/10.1016/j.eneco.2022.105812.

    Article  Google Scholar 

  4. W.Q. Sun, J.J. Cai, H.J. Mao, D.J. Guan, J. Iron Steel Res. Int. 18 (2011) No. 6, 31–36. https://doi.org/10.1016/S1006-706X(11)60074-5.

    Article  Google Scholar 

  5. L. Ren, S. Zhou, T. Peng, X. Ou, Renew. Sustain. Energy Rev. 143 (2021) 110846. https://doi.org/10.1016/j.rser.2021.110846.

    Article  Google Scholar 

  6. X. Zhang, K. Jiao, J. Zhang, Z. Guo, J. Clean. Prod. 306 (2021) 127259. https://doi.org/10.1016/j.jclepro.2021.127259.

    Article  Google Scholar 

  7. P. Cavaliere, in: Clean Ironmaking and Steelmaking Processes, Springer, Cham, 2019, pp. 1–37. https://doi.org/10.1007/978-3-030-21209-4_1.

  8. W. Zhang, J. Dai, C.Z. Li, X.B. Yu, Z.L. Xue, H. Saxén, Steel Res. Int. 92 (2021) 2000326. https://doi.org/10.1002/srin.202000326.

    Article  Google Scholar 

  9. W. Zhang, Z.L. Xue, J.H. Zhang, W. Wang, C.G. Cheng, Z.S. Zou, J. Iron Steel Res. Int. 24 (2017) 778–786. https://doi.org/10.1016/S1006-706X(17)30117-6.

    Article  Google Scholar 

  10. W. Zhang, J.H. Zhang, Z.L. Xue, Z.S. Zou, Y.H. Qi, ISIJ Int. 56 (2016) 1358–1367. https://doi.org/10.2355/isijinternational.ISIJINT-2016-090.

    Article  Google Scholar 

  11. W. Zhang, J.H. Zhang, Z.L. Xue, Energy 121 (2017) 135–146. https://doi.org/10.1016/j.energy.2016.12.125.

    Article  Google Scholar 

  12. J. Yan, Int. J. Miner. Process. Extr. Metall. 3 (2018) 15. https://doi.org/10.11648/j.ijmpem.20180302.11.

  13. M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P. Martin Trusler, P. Webley, J. Wilcox, N. Mac Dowell, Energy Environ. Sci. 11 (2018) 1062–1176. https://doi.org/10.1039/c7ee02342a.

  14. A. Arasto, E. Tsupari, J. Kärki, M. Sihvonen, J. Lilja, Energy Procedia 37 (2013) 7117–7124. https://doi.org/10.1016/j.egypro.2013.06.648.

    Article  Google Scholar 

  15. T.P. Hills, M. Sceats, D. Rennie, P. Fennell, Energy Procedia 114 (2017) 6166–6170. https://doi.org/10.1016/j.egypro.2017.03.1753.

    Article  Google Scholar 

  16. S. Roussanaly, C. Fu, M. Voldsund, R. Anantharaman, M. Spinelli, M. Romano, Energy Procedia 114 (2017) 6229–6239. https://doi.org/10.1016/j.egypro.2017.03.1761.

    Article  Google Scholar 

  17. Z.W. Zhao, F.L. Kong, L.G. Tong, S.W. Yin, Y.R. Xie, L. Wang, Iron and Steel 57 (2022) No. 2, 162–174. https://doi.org/10.13228/j.boyuan.issn0449-749x.20210465.

  18. F. Chang, L.X. Wang, Tianjin Metallurgy (2022) No. 1, 74–78.

    Google Scholar 

  19. M.X. Guo, H.W. Yang, Energy of China 40 (2018) No. 8, 35–37+23–24.

  20. W. Tian, H. An, X. Li, H. Li, K. Quan, X. Lu, H. Bai, J. Clean. Prod. 360 (2022) 132190. https://doi.org/10.1016/j.jclepro.2022.132190.

    Article  Google Scholar 

  21. J. Zhao, H.B. Zuo, Y.J. Wang, J.S. Wang, Q.G. Xue, Ironmak. Steelmak. 47 (2020) 296–306. https://doi.org/10.1080/03019233.2019.1639029.

    Article  Google Scholar 

  22. S.L. Wu, W.L. Zhang, Z.J. Hu, J. Iron Steel Res. Int. 28 (2021) 641–650. https://doi.org/10.1007/s42243-020-00486-x.

    Article  Google Scholar 

  23. B.J. Li, China Steel (2020) No. 8, 32–35. https://doi.org/10.3969/j.issn.1672-5115.2020.08.010.

    Article  Google Scholar 

  24. J. Li, C. Li, W. Zhang, J. Zhang, Z. Xue, J. Clean. Prod. 371 (2022) 133294. https://doi.org/10.1016/j.jclepro.2022.133294.

    Article  Google Scholar 

  25. B. Fan, F.Q. Shangguan, J.C. Zhou, L. Gan, C.X. Zhang, in: Proceedings of the 2010 National Annual Conference on Energy and Thermal Engineering, The Chinese Society for Metals, Xiamen, China, 2010, pp. 255–258.

  26. H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2006. https://www.researchgate.net/publication/304658834_IPCC_Guidelines_for_National_Greenhouse_Gas_Inventories.

  27. World Steel Association, CO2 Emissions Data Collection User Guide. https://www.jisf.or.jp/business/ondanka/kouken/iso/docs/IISIDataCollectionUserGuideA5_VERSION5.1.pdf.

  28. Y.W. Zhao, H.B. Zuo, X.F. She, G. Wang, Q.G. Xue, J.S. Wang, Nonferr. Met. Sci. Eng. 10 (2019) No. 1, 34–40. https://doi.org/10.13264/j.cnki.ysjskx.2019.01.006.

  29. Q.G. Xue, Y.H. Han, J.S. Wang, X.F. She, X.X. Zhang, in: Proceedings of the 2011 National Seminar on Metallurgical Energy Conservation, Emission Reduction and Low-Carbon Technology Development, The Chinese Society for Metals, Tangshan, China, 2011, pp. 49–54.

  30. K.S. Abdel Halim, V.N. Andronov, M.I. Nasr, Ironmak. Steelmak. 36 (2009) 12–18. https://doi.org/10.1179/174328107X155240.

  31. Y.B. Ye, F.F. Xing, K. Liu, R.Q. Zhen, Q. Jiang, Environmental Engineering 30 (2012) No. S2, 224–227+245. https://doi.org/10.13205/j.hjgc.2012.s2.011.

  32. Z.F. Zhou, Numerical investigation on oxygen coal combustion behavior in the raceway of blast furnace, University of Science and Technology Beijing, Beijing, China, 2018.

    Google Scholar 

  33. Z.L. Lei, Theoretical exploration on oxygen blast furnace process, Northeastern University, Shenyang, China, 2014.

    Google Scholar 

  34. W.H. Li, T. Li, Xinjiang Iron and Steel (2020) No. 1, 1–5.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from Hubei Provincial Key Technologies Research and Development Program (2022BCA058), China Scholarship Council (201908420169), and the European Project “Towards Fossil-free Steel”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

Wei Zhang is a youth editorial board member for Journal of Iron and Steel Research International and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 128 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Lei, Jm., Li, Jq. et al. CO2 emission evaluation and cost analysis of oxygen blast furnace process with sintering flue gas injection. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01141-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01141-x

Keywords

Navigation