Skip to main content
Log in

Stress corrosion cracking behavior of PH13-8Mo stainless steel in Cl solutions

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The stress corrosion cracking (SCC) behavior of PH13-8Mo precipitation hardening stainless steel (PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile (SSRT) test at various applied potentials. Fracture morphology, elongation ratio, and percentage reduction of area were measured to evaluate the SCC susceptibility. A critical concentration of 1.0 mol/L neutral NaCl existed for SCC of PH13-8Mo steel. Significant SCC emerged when the applied potential was more negative than—0.15 VSCE, and the SCC behavior was controlled by an anodic dissolution (AD) process. When the applied potential was lower than—0.55 VSCE, an obvious hydrogen-fracture morphology was observed, which indicated that the SCC behavior was controlled by hydrogen-induced cracking (HIC). Between —0.15 and —0.35 VSCE, the applied potential exceeded the equilibrium hydrogen evolution potential in neutral NaCl solutions and the crack tips were of electrochemical origin in the anodic region; thus, the SCC process was dominated by the AD mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abad, M. Hahn, O. S. Es-Said, Eng. Fail. Anal. 17 (2010) 208–212.

    Article  Google Scholar 

  2. A. K. Jha, K. Sreekumar, P. P. Sinha, Eng. Fail. Anal. 17 (2010) 1195–1204.

    Article  Google Scholar 

  3. W. H. Yuan, X. H. Gong, Y. Q. Sun, J. Iron Steel Res. Int. 23 (2016) 401–408.

    Article  Google Scholar 

  4. W. Jiang, K. Y. Zhao, D. Ye, J. Li, Z. D. Li, J. Su, J. Iron Steel Res. Int. 20 (2013) No. 5, 61–65.

    Article  Google Scholar 

  5. J. L. Zhao, Y. Xi, W. Shi, L. Li, J. Iron Steel Res. Int. 19 (2012) No. 4, 471–475.

    Article  Google Scholar 

  6. D. N. Zhou, Y. Han, W. Zhang, X. D. Fang, J. Iron Steel Res. Int. 17 (2010) No. 8, 50–54.

    Article  Google Scholar 

  7. F. Zucchi, V. Grassi, C. Monticelli, Corros. Sci. 48 (2006) 522–530.

    Article  Google Scholar 

  8. X. S. Du, Y. J. Su, J. X. Li, Corros. Sci. 65 (2012) 278–287.

    Article  Google Scholar 

  9. A. H. S. Bueno, E. D. Moreira, P. Siqueira, Mater. Sci. Eng. A 597 (2014) 117–121.

    Article  Google Scholar 

  10. D. Hardie, E. A. Charles, A. H. Lopez, Corros. Sci. 48 (2006) 4378–4385.

    Article  Google Scholar 

  11. M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 49 (2007) 4081–4097.

    Article  Google Scholar 

  12. D. Figueroa, M. J. Robinson, Corros. Sci. 52 (2010) 1593–1602.

    Article  Google Scholar 

  13. E. Lunarska, Y. Ososkov, Y. Jagodzinsky, Int. J. Hydrog. Energy 22 (1997) 279–284.

    Article  Google Scholar 

  14. C. Xu, W. Ming, H. Chuan, X. Jun, Acta Metall. Sin. 46 (2010) 951–958.

    Article  Google Scholar 

  15. B. R. W. Hinton, R. P. M. Procter, Corros. Sci. 23 (1983) 101–123.

    Article  Google Scholar 

  16. L. Zhang, X. G. Li, C. W. Du, Y. Z. Huang, Mater. Des. 30 (2009) 2259–2263.

    Article  Google Scholar 

  17. S. Dey, A. K. Mandhyan, S. K. Sondhi, I. Chattoraj, Corros. Sci. 48 (2006) 2676–2688.

    Article  Google Scholar 

  18. M. C. Li, Y. F. Cheng, Electrochim. Acta 52 (2007) 8111–8117.

    Article  Google Scholar 

  19. L. W. Tsay, H. L. Lu, C. Chen, Corros. Sci. 50 (2008) 2506–2511.

    Article  Google Scholar 

  20. R. N. Parkins, Corros. Sci. 20 (1980) 147.

    Article  Google Scholar 

  21. M. Javidi, S. Bahalaou Horeh, Corros. Sci. 80 (2014) 213–220.

    Article  Google Scholar 

  22. M. Sun, K. Xiao, C. F. Dong, Aerosp. Sci. Technol. 36 (2014) 125–131.

    Article  Google Scholar 

  23. C. F. Dong, Z. Y. Liu, X. G. Li, Y. F. Cheng, Int. J. Hydrog. Energy 34 (2009) 9879–9884.

    Article  Google Scholar 

  24. G. A. Zhang, Y. F. Cheng, Corros. Sci. 51 (2009) 1714–1724.

    Article  Google Scholar 

  25. D. D. MacDonald, Electrochim. Acta 56 (2011) 1761–1772.

    Article  Google Scholar 

  26. J. O. M. Bockris, D. Drazic, A. R. Despic, Electrochim. Acta 4 (1961) 325–361.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-fang Dong Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Dong, Cf., Liang, Jx. et al. Stress corrosion cracking behavior of PH13-8Mo stainless steel in Cl solutions. J. Iron Steel Res. Int. 24, 282–289 (2017). https://doi.org/10.1016/S1006-706X(17)30041-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30041-9

Key words

Navigation