Skip to main content
Log in

Effects of Chromium, Vanadium and Austenite Deformation on Transformation Behaviors of High-strength Spring Steels

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The phase transformation behavior during continuous cooling of high-strength spring steels containing different amounts of Cr was studied. Furthermore, the effects of combining Cr with V as well as austenite deformation on the transformation kinetics were investigated in the method of dilatometry and metallography hardness. The results showed that, with the increase of Cr, the pearlite transformation field was enlarged, the ferrite transformation field was narrowed, and the entire phase field shifted to the right. With the addition of V, the start transformation temperature of undercooling austenite (Ar3) was gradually increased, but the ferrite and pearlite transformation fields were not affected. Besides, the minimum critical cooling rate of martensitic transformation was also reduced. In addition, the dynamic continuous cooling transformation (CCT) curve moves to the top left compared with the static CCT curve. The transformed microstructures showed that the addition of V and the deformation not only refined the overall transformed microstructures but also reduced the lamellar spacing of pearlite. The alloying elements Cr and V promoted the Vickers hardness. However, the effect of Cr on the Vickers hardness of martensite was stronger and the influence of V on that of pearlite was stronger. Moreover, the Vickers hardness affected by the austenite deformation was more complex and strongly depended on the transformed microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yang, W. Tao, M. Liu, Y. Zhang, H. Zhang, H. Zhao, Sens. 11 (2011) 7364–7381.

    Article  Google Scholar 

  2. H. Y. Hsieh, N. Chen, C. L. Liao, in: American Society of Mechanical Engineers, Colorado, 2007, pp. 319–325.

  3. S. Kumar, K. K. Keshari, S. Kumar, Int. J. Metal. Eng. 4 (2015) No. 1, 1–5.

    Google Scholar 

  4. B. Nie, Z. Zhang, Z. H. Zhao, Q. P. Zhong, Mater. Des. 50 (2013) 503–508.

    Article  Google Scholar 

  5. C. Bathias, P. C. Paris, Gigacycle Fatigue in Mechanical Practice, Marcel Dekker, New York, 2005.

    Google Scholar 

  6. C. Berger, B. Kaiser, Int. J. Fatigue 28 (2006) 1658–1663.

    Article  Google Scholar 

  7. S. X. Li, Y. Q. Weng, W. J. Hui, Z. G. Yang, Very High Cycle Fatigue Properties of High Strength Steels: Effects of Non-metallic Inclusions, Metallurgical Industry Press, Beijing, 2010.

    Google Scholar 

  8. M. Stratmann, K. Bohnenkamp, T. Ramchandran, Corros. Sci. 27 (1987) 905–926.

    Article  Google Scholar 

  9. M. Stratmann, H. Streckel, Corros. Sci. 30 (1990) 681–696.

    Article  Google Scholar 

  10. T. Ishikawa, T. Motoki, R. Katoh, A. Yasukawa, J. Colloid Interface Sci. 250 (2002) 74–81.

    Article  Google Scholar 

  11. T. Kamimura, M. Stratmann, Corros. Sci. 43 (2001) 429–447.

    Article  Google Scholar 

  12. Yamashita M, Shimizu T, Konishi H, J. Mizuki, H. Uchida, Corros. Sci. 45 (2003) 381–394.

    Article  Google Scholar 

  13. W. J. Nam, C. S. Lee, D. Y. Ban, Mater. Sci. Eng. A 289 (2000) 8–17.

    Article  Google Scholar 

  14. A. A. Barani, D. Ponge, D. Raabe, Mater. Sci. Eng. A 426 (2006) 194–201.

    Article  Google Scholar 

  15. C. L. Zhang, Y. Z. Liu, L. Y. Zhou, C. Jiang, J. Iron Steel Res. Int. 19 (2012) No. 3, 47–61.

    Article  Google Scholar 

  16. A. A. Barani, F. Li, P. Romano, D. Ponge, D. Raabe, Mater. Sci. Eng. A 463 (2007) 138–146.

    Article  Google Scholar 

  17. V. Ollilainen, W. Kasprzak, L. Holappa, J. Mater. Process. Technol. 134 (2003) 405–412.

    Article  Google Scholar 

  18. C. Garcia-Mateo, C. Capdevila, F. G. Caballero, C. G. Andrés, ISIJ Int. 48 (2008) 1270–1275.

    Article  Google Scholar 

  19. F. Ishikawa, T. Takahashi, ISIJ Int. 35 (1995) 1128–1133.

    Article  Google Scholar 

  20. G. Huang, K. M. Wu, Met. Mater. Int. 17 (2011) 847–852.

    Article  Google Scholar 

  21. Y. Li, Z. M. Yang, Acta Metall. Sin. 46 (2010) 1501–1510.

    Google Scholar 

  22. B. Podgornik, V. Leskovsek, M. Godec, B. Sencic, Mater. Sci. Eng. A 599 (2014) 81–86.

    Article  Google Scholar 

  23. B. Podgornik, M. Torkar, J. Burja, M. Godeca, B. Sencic, Mater. Sci. Eng. A 638 (2015) 183–189.

    Article  Google Scholar 

  24. C. J. Wu, G. L. Chen, W. J. Qiang, Metal Materials Science, Metallurgic Industry Press, Beijing, 2000.

    Google Scholar 

  25. B. Jiang, Z. X. Huo, L. Y. Zhou, D. Zhang, Q. Han, Y. Z. Liu, Trans. Mater. Heat Treat. 30 (2014) 119–124.

    Google Scholar 

  26. H. Y. Li, Y. H. Li, X. F. Wang, Y. K. Zhao, K. Y. Xie, Y. Su, J. Cent. South Univ. 45 (2014) 3363–3372.

    Google Scholar 

  27. M. Gomez, L. Rancei, E. Escudero, S. F. Medina, J. Mater. Sci. Technol. 30 (2014) 511–516.

    Article  Google Scholar 

  28. H. J. Jun, J. S. Kang, D. H. Seo, K. B. Kang, C. G. Park, Mater. Sci. Eng. A 422 (2006) 157–162.

    Article  Google Scholar 

  29. D. J. Mun, E. J. Shin, Y. W. Choi, J. S. Lee, Y. M. Koo, Mater. Sci. Eng. A 545 (2012) 214–224.

    Article  Google Scholar 

  30. C. Zener, Trans. Aime 167 (1946) 550–595.

    Google Scholar 

  31. A. Béché, H. S. Zurob, C. R. Hutchinson, Metal. Mater. Trans. A 38 (2007) 2950–2955.

    Article  Google Scholar 

  32. M. C. Zhao, K. Yang, F. R. Xiao, Y. Y. Shan, Mater. Sci. Eng. A. 355 (2003) No. 1, 126–136.

    Article  Google Scholar 

  33. T. Abe, K. Tsukada, I. Kozasu, in: J. M. Gray et al., (Ed.), Proceedings of International Conference on HSLA Steels: Metallurgy and Applications, Beijing, 1985, 103.

  34. R. Lagneborg, T. Siwecki, S. Zajac, B. Hutchinson, Scand. J. Metall, 28 (1999) No. 5, 186–241.

    Google Scholar 

  35. Y. C. Jung, H. Ueno, H. Ohtsubo, K. Nakai, Y. Ohmori, ISIJ Int. 35 (1995) No. 8, 1001–1005.

    Article  Google Scholar 

  36. H. G. Lin, D. Z. Fu, Machinery Industry Press, Beijing. 1988, 33.

  37. F. Marketz, F. D. Fischer, Metal. Mater. Trans. A. 26 (1995) No. 2, 267–278.

    Article  Google Scholar 

  38. C. M. Sellars, J. A. Whiteman, Metal Sci. 13 (1979) No. (3–4), 187–194.

    Article  Google Scholar 

  39. M. Umemoto, Z. G. Liu, K. Masuyama, K. Tsuchiya, Scripta Mater. 45 (2001) No. 4, 391–397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Niu or Yin-li Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, G., Chen, Yl., Wu, Hb. et al. Effects of Chromium, Vanadium and Austenite Deformation on Transformation Behaviors of High-strength Spring Steels. J. Iron Steel Res. Int. 23, 1323–1332 (2016). https://doi.org/10.1016/S1006-706X(16)30195-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30195-9

Key words

Navigation