Skip to main content
Log in

An experimental prototype of an innovative fluid-driven electromagnetic stirring technique

  • Metallurgy and Metal Working
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A new electromagnetic stirring technique that is driven by hydrodynamic forces was presented. This technique offers the following advantages. First, the stirrer can be immersed in the liquid metal, thereby significantly increasing the penetration depth of the electromagnetic forces and significantly improving the stirring efficiency; thus, this technique is particularly suitable for large-scale liquid metal. Second, under certain conditions, this technique can overcome difficulties that are encountered with traditional stirrers, such as accessing regions that are difficult to reach in working spaces with complex or narrow shapes. This stirrer also has a simpler structure than a traditional stirrer; thus, the design can be easily modified, and no external power supply is required. An experimental prototype was also presented for controlling the fluid flow rate, thereby controlling the electromagnetic force and velocity field of the driven liquid metal. The velocity distribution in a liquid GaInSn alloy under fluid-driven electromagnetic stirring was quantitatively measured using ultrasonic Doppler velocimetry (UDV). The primary results show that a remarkable velocity field has been achieved and that fluid-driven electromagnetic stirring is an effective means of stirring liquid metal. Finally, the potential applications of this technique in industry, along with key challenges, were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Braunbek, Z. Physik. 78 (1932) 312–334.

    Article  Google Scholar 

  2. J. Stiller, K. Koal, W. E. Nagel, J. Pal, A. Cramer, Eur. Phys. J. (Special Topics) 220 (2013) 111–122.

    Article  Google Scholar 

  3. H. Yasuda, T. Toh, K. Iwai, K. Morita, ISIJ Int. 47 (2007) 619–626.

    Article  Google Scholar 

  4. K. Okazawa, T. Toh, J. Fukuda, T. Kawase, M. Toki, ISIJ Int. 41 (2001) 851–858.

    Article  Google Scholar 

  5. R. Hirayama, K. Fujisaki, T. Yamada, IEEE Trans. Magn. 40 (2004) 2095–2097.

    Article  Google Scholar 

  6. J. R. Hull, L. R. Turner, IEEE Trans. Magn. 36 (2000) 2004–2011.

    Article  Google Scholar 

  7. S. W. Wang, X. D. Wang, M. J. Ni, X. D. Zhang, Z. H. Wang, X. Z. Na, Acta Metall. Sin. 49 (2013) 544–552.

    Article  Google Scholar 

  8. P. A. Nikrityuk, S. Eckert, K. Eckert, Eur. J. Mech. B 27 (2008) 177–201.

    Article  Google Scholar 

  9. S. Eckert, P. A. Nikrityuk, D. Raebiger, K. Eckert, G. Gerbeth, Metall. Mater. Trans. B 38 (2007) 977–988.

    Article  Google Scholar 

  10. X. D. Wang, Y. Fautrelle, J. Etay, R. Moreau, Metall. Mater. Trans. B 40 (2009) 82–90.

    Article  Google Scholar 

  11. N. B. Morley, J. Burris, L. C. Cadwallader, M. D. Nornberg, Rev. Sci. Instrum. 79 (2008) 056107.

    Article  Google Scholar 

  12. X. D. Wang, Y. Kolesnikov, Magnetohydrodynamics 50 (2014) 139–156.

    Google Scholar 

  13. User’s Manual for DOP 3010, Version4. 02. 1.

  14. O. Andreev, Y. Kolesnikov, A. Thess, Exp. Fluids 46 (2009) 77–83.

    Article  Google Scholar 

  15. S. Eckert, G. Gerbeth, Exp. Fluids 32 (2002) 542–546.

    Article  Google Scholar 

  16. S. Eckert, B. Willers, G. Gerbeth, Metall. Mater. Trans. A 36 (2005) 267–270.

    Article  Google Scholar 

  17. H. Kikura, Y. Takeda, T. Sawada, J. Magn. Magn. Mater. 201 (1999) 276–280.

    Article  Google Scholar 

  18. Y. Takeda, Exp. Therm. Fluid. Sci. 10 (1995) 444–453.

    Article  Google Scholar 

  19. A. Cramer, S. Eckert, G. Gerbeth, Eur. Phys. J. (Special Topics) 220 (2013) 25–41.

    Article  Google Scholar 

  20. A. Cramer, J. Pal, G. Gerbeth, Phys. Fluids 19 (2007) 118109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-dong Wang.

Additional information

Foundation Item: Item Sponsored by the Program of “One Hundred Talented People” of the Chinese Academy of Sciences (111800M105); Chinese Academy Sciences Funding (04078400)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, Xd., Kolesnikov, Y. et al. An experimental prototype of an innovative fluid-driven electromagnetic stirring technique. J. Iron Steel Res. Int. 23, 422–427 (2016). https://doi.org/10.1016/S1006-706X(16)30067-X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30067-X

Key words

Navigation