Skip to main content
Log in

Modelling of bubble aggregation, breakage and transport in slab continuous casting mold

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The bubble-liquid flow, especially the aggregation and breakage behavior, plays a significant role in the slab continuous casting process. A 1/4th water model was employed to investigate the two-phase flow characteristics and the bubble size distribution. A mathematical model based on the Euler-Euler approach was developed to analyze the bubble aggregation and breakage in the bubbly flow. The population balance model (PBM) was applied to calculate bubble size distribution, and the simulation was implemented through the MUSIG (multiple size group) model. The numerical predictions were verified by the water model experiment. The results show that the PBM is a useful approach for analyzing bubble size distribution and can be taken into industrial applications of gas-liquid two phase flow inside the continuous casting mold. The ratio of big bubbles and bubble mean diameter in the upper recirculation zone are found to decrease with the increment of water flow rate and increase with the increment of gas flow rate. The bubble aggregation and breakage behavior, bubble size distribution and the effect of gas bubbles on flow field in the continuous casting mold are revealed. The numerical results are compared with the experiment and they show good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Abbel, W. Damen, G. de Gendt, W. Tiekink, ISIJ Int. 36 (1996) S219–S222.

    Article  Google Scholar 

  2. N. Kasai, Y. Watanabe, K. Kajiwara, M. Toyoda, Tetsu-to-Hagané 83 (1997) 24–29.

    Article  Google Scholar 

  3. Z. Q. Liu, L. M. Li, F. S. Qi, B. K. Li, M. F. Jiang, F. Tsukihashi, Metall. Mater. Trans. B 46 (2015) 406–420.

    Article  Google Scholar 

  4. G. G. Lee, B. G. Thomas, S. H. Kim, Met. Mater. Int. 16 (2010) 501–506.

    Article  Google Scholar 

  5. H. Bai, B. G. Thomas, Metall. Mater. Trans. B 32 (2001) 1143–1159.

    Article  Google Scholar 

  6. Y. J. Kwon, J. Zhang, H. G. Lee, ISIJ Int. 46 (2006) 257–266.

    Article  Google Scholar 

  7. B. G. Thomas, X. Huang, R. C. Suaaman, Metall. Mater. Trans. B 25 (1994) 527–547.

    Article  Google Scholar 

  8. R. Sanchez-Perez, R. D. Morales, L. Garcia-Demedices, J. Palafox Ramos, M. Diaz-Cruz, Metall. Mater. Trans. B 35 (2004) 85–99.

    Article  Google Scholar 

  9. Z. Q. Liu, B. K. Li, M. F. Jiang, F. Tsukihashi, ISIJ Int. 53 (2013) 484–492.

    Article  Google Scholar 

  10. B. K. Li, F. Tsukihashi, ISIJ Int. 45 (2005) 30–36.

    Article  Google Scholar 

  11. Y. Miki, H. Ohno, Y. Kishimoto, S. Tanaka, Tetsu-to-Hagané 97 (2011) 423–432.

    Article  Google Scholar 

  12. N. G. Deen, T. Solberg, B. H. Hjertager, Chem. Eng. Sci. 56 (2001) 6341–6349.

    Article  Google Scholar 

  13. D. Ramkrishna, A. W. Mahoney, Chem. Eng. Sci. 57 (2002) 595–606.

    Article  Google Scholar 

  14. T. Wang, J. Wang, Y. Jin, Ind. Eng. Chem. Res. 44 (2005) 7540–7549.

    Article  Google Scholar 

  15. Y. Sato, K. Sekoguchi, Int. J. Multiphase Flow 2 (1979) 79–85.

    Article  Google Scholar 

  16. X. Li, H. Zhang, R. Wang, J. Wang, Aerosp. Sci. Technol. 14 (2010) 203–212.

    Article  Google Scholar 

  17. Y. Liao, D. Lucas, E. Krepper, M. Schmidtke, Nucl. Eng. Des. 241 (2011) 1024–1033.

    Article  Google Scholar 

  18. M. J. Prince, H. W. Blanch, AIChE Journal 36 (1990) 1485–1499.

    Article  Google Scholar 

  19. H. Luo, H. F. Svendsen, AIChE Journal 42 (1996) 1225–1233.

    Article  Google Scholar 

  20. L. M. Li, Z. Q. Liu, B. K. Li, H. Matsuura, F. Tsukihashi, ISIJ Int. 55 (2015) 1337–1346.

    Article  Google Scholar 

  21. L. Schiller, Z. Naumann, Z. Ver. Deutsch. Ing. 77 (1935) 318–320.

    Google Scholar 

  22. S. Kumar, D. Ramkrishna, Chem. Eng. Sci. 51 (1996) 1311–1332.

    Article  Google Scholar 

  23. S. C. P. Cheung, G. H. Yeoh, J. Y. Tu, Chem. Eng. Sci. 62 (2007) 4659–4674.

    Article  Google Scholar 

  24. Z. Q. Liu, F. S. Qi, B. K. Li, M. F. Jiang, J. Iron Steel Res. Int. 21 (2014) No. 12, 1081–1089.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-kuan Li.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51574068)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Lm., Liu, Zq. & Li, Bk. Modelling of bubble aggregation, breakage and transport in slab continuous casting mold. J. Iron Steel Res. Int. 22 (Suppl 1), 30–35 (2015). https://doi.org/10.1016/S1006-706X(15)30134-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)30134-5

Key words

Navigation