Skip to main content
Log in

Low cycle fatigue behavior and cyclic softening of P92 ferritic-martensitic steel

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The low cycle fatigue (LCF) behavior of P92 martensitic steel was investigated under different controlled strain amplitudes at room and high temperatures (873 K). The cyclic stress responses at all temperatures and strain amplitudes exhibited obviously rapid softening behavior at the early stage of fatigue life, and there was no saturated stage at high temperature. The fracture surfaces of the fatigue samples were observed by scanning electron microscopy (SEM) and optical microscopy. It was shown that crack initiation and propagation occurred transgranularly at both testing temperatures. A typical character was the high density crack branches or secondary cracks along fatigue striations at high temperature, which initiated from the oxidized inclusions and grain boundaries. Further investigation by transmission electron microscopy (TEM) showed that the softening behavior was attributed to the microstructure evolution during fatigue life, such as annihilation of dislocations and migration of martensite laths as well as carbide coarsening, especially for samples tested at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yi, B. Lee, J. Kim, J. Jang, Mater. Sci. Eng. A 429 (2006) 161–168.

    Article  Google Scholar 

  2. M. Toloczko, M. Hamilton, S. Maloy, J. Nucl. Mater. 318 (2003) 200–206.

    Article  Google Scholar 

  3. J. Henry, X. Averty, Y. Dai, P. Lamagnèrea, J. P. Pizzanellib, J. J. Espinasb, P. Widenta, J. Nucl. Mater. 318 (2003) 215–227.

    Article  Google Scholar 

  4. R. Kannan, V. S. Srinivasan, M. Valsan, K. Bhanu Sankara Rao, Trans. Indian Inst. Met. 63 (2010) 571–574.

    Article  Google Scholar 

  5. P. J. Ennis, A. Czyrska-Filemonowicz, Sadhana 28 (2003) 709–730.

    Article  Google Scholar 

  6. H. D. Kim, I. S. Kim, ISIJ Int. 34 (1994) 198–204.

    Article  Google Scholar 

  7. W. J. Plumbridge, N. Knee, Mater. Sci. Technol. 1 (1985) 577–582.

    Article  Google Scholar 

  8. A. Vyrostkova, A. Kroupa, J. Janovec, M. Svoboda, Acta Mater. 46 (1998) 31–38.

    Article  Google Scholar 

  9. K. Hamada, K. Tokuno, Y. Tomita, H. Mabuchi, K. Okamoto, ISIJ Int. 35 (1995) 86–91.

    Article  Google Scholar 

  10. G. Ebi, A. J. McEvily, Fatigue Fract. Engg. Mater. Struct. 7 (1984) 299–314.

    Article  Google Scholar 

  11. R. W. Swindman, S. D. Solomon, G. R. Halford, L. R. Kaisand, B. N. Leis, Low Cycle Fatigue, ASTM STP 942, ASTM, Philadelphia, 1998.

    Google Scholar 

  12. A. Nagesha, M. Valsan, R. Kannan, K. Bhanu Sankara Rao, S. L. Mannan, Int. J. Fatigue 24 (2002) 1285–1293.

    Article  Google Scholar 

  13. S. Nishino, K. Shiozawa, A. Kojima, S. Seo, Y. Yamamoto, J. Soc. Mat. Sci. Jaan 48 (1999) 610–615.

    Article  Google Scholar 

  14. B. G. Gieseke, C. R. Brinkman, P. J. Maziasz, Microstructure and Mechanical Properties of Aging Material, Chicago, United State, 1993.

    Google Scholar 

  15. H. Okamura, R. Ohtani, K. Saito, K. Kimurad, R. Ishiid, K. Fujiyamad, S. Hongod, T. Isekid, H. Uchidad, Nuclear Engineering and Design 193 (1999) 243–254.

    Article  Google Scholar 

  16. J. S. Park, S. J. Kim, C. S. Lee, Mater. Sci. Eng. A 298 (2001) 127–136.

    Article  Google Scholar 

  17. P. F. Giroux, F. Dalle, M. Sauzay, C. Caës, B. Fournier, T. Morgeneyer, A. F. Gourgues-Lorenzon, Procedia Engineering 2 (2010) 2141–2150.

    Article  Google Scholar 

  18. ASTM, Standard Specification for Seamless Ferritic Steel-Steel Pipe for High-temperature Service, US, A335, 2003.

  19. V. K. Sikka, C. T. Ward, K. C. Thomas, in: A. K. Khare (Eds.), Ferritic Steels for High Temperature Applications, Proceedings of ASM International Conference on Production, Fabrication, Properties and Application of Ferritic Steels for High Temperature Applications, American Society for Metals, Ohio, 1983, pp. 65–84.

    Google Scholar 

  20. K. Bhanu Sankara Rao, M. Valsan, R. Sandhya, S. K. Ray, S. L. Mannan, P. Rodriguez, Int. J. Fatigue 7 (1985) 141–147.

    Article  Google Scholar 

  21. M. F. Giordana, I. Alvarez-Armas, M. Sauzay, A. F. Armas, Key Eng. Mater. 465 (2011) 358–361.

    Article  Google Scholar 

  22. D. M. Li, K. W. Kim, C. S. Lee, Int. J. Fatigue 19 (1997) 607–612.

    Article  Google Scholar 

  23. B. K. Choudhary, K. B. S. Rao, S. L. Mannan, Metall. Mater. Trans. A 30 (1999) 2825–2834.

    Article  Google Scholar 

  24. V. Shankar, V. Bauer, R. Sandhya, M. D. Mathew, H. J. Christ, J. Nuclear Mater. 420 (2012) 23–30.

    Article  Google Scholar 

  25. V. Shankar, M. Valsan, K. Bhanu Sankara Rao, Mater. Sci. Eng. A 437 (2006) 413–422.

    Article  Google Scholar 

  26. D. T. Raske, J. D. Morrow, Manual on Low Cycle Fatigue Testing, US, ASTM-STP465, 1969.

  27. G. Eggeler, N. Nilsvang, B. Ilschner, Steel Res. 58 (1987) 97–103.

    Article  Google Scholar 

  28. K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, R. Komine, Mater. Sci. Eng. A 267 (1999) 19–25.

    Article  Google Scholar 

  29. E. Cerri, E. Evangelista, S. Spigarelli, P. Bianchi, Mater. Sci. Eng. A 245 (1998) 285–292.

    Article  Google Scholar 

  30. M. Sauzay, Mater. Sci. Eng. A 510–511 (2009) 74–80.

    Article  Google Scholar 

  31. R. W. Landgraf, J. Morrow, T. Endo, J. Mater. JMLSA 4 (1969) 176–188.

    Google Scholar 

  32. O. H. Basquin, Proc. Am. Soc. Test Mater. ASTEA 10 (1910) 625–630.

    Google Scholar 

  33. L. F. Coffin Jr, Trans. ASME 76 (1954) 931–950.

    Google Scholar 

  34. S. S. Manson, Behaviour of Materials under Conditions of Thermal Stress, NACA Tech Note-2933, Cleveland, 1953.

    Google Scholar 

  35. J. L. Chaboche, P. M. Lesne, Fatigue Fract. Engng. Mater. Struct. 11 (1988) 1–17.

    Article  Google Scholar 

  36. G. Ebi, A. J. McEvily, Fatigue Fract. Eng. Mater. Struct. 7 (1984) 299–314.

    Article  Google Scholar 

  37. Z. W. Huang, F. H. Yuan, Z. G. Wang, S. J. Zhu, F. G. Wang, Acta Metall. Sin. 43 (2007) 1025–1030.

    Google Scholar 

  38. R. Kannan, V. S. Srinivasan, M. Valsan, K. Bhanu Sankara Rao, Trans. Indian Inst. Met. 63 (2010) 571–574.

    Article  Google Scholar 

  39. A. H. Cottrell, Dislocations and Plastic in Flow in Crystal, Oxford University Press, London, 1953.

    MATH  Google Scholar 

  40. D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. 37 (1979) 111–120.

    Article  Google Scholar 

  41. J. I. Dickson, J. Boutin, L. Handfield, Mater. Sci. Eng. 64 (1984) L7–L11.

    Article  Google Scholar 

  42. M. F. Giordana, I. Alvarez-Armas, A. Armas, J. Nucl. Mater. 424 (2012) 247–251.

    Article  Google Scholar 

  43. Q. X. Zhao, L. H. Zhu, H. C. Gu, Y. S. Lu, J. Power Eng. 25 (2005) s1, 120–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-fei Hu.

Additional information

Foundation Item: Item Sponsored by Key Project of Shanghai Science and Technology Commission of China (10521100500)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Hu, Zf., Fan, Lk. et al. Low cycle fatigue behavior and cyclic softening of P92 ferritic-martensitic steel. J. Iron Steel Res. Int. 22, 534–542 (2015). https://doi.org/10.1016/S1006-706X(15)30037-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)30037-6

Key words

Navigation