Skip to main content
Log in

Influence of Inclusion on Corrosion Behavior of E36 Grade Low-Alloy Steel in Cargo Oil Tank Bottom Plate Environment

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Corrosion behavior of low-alloy steel was investigated in simulated cargo oil tank (COT) bottom plate service environment (10% NaCl solution, pH = 0.85). The corrosion behavior of inclusion was studied by in-situ scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It was found that pitting corrosion was inclined to occur around the place where inclusions exist. After initial corrosion, an area of 10 — 20 µm in diameter was formed as a circinate cathode around the edge of inclusion. MnS inclusion dissolved in the simulated COT corrosion solution before low-alloy steel matrix, and pitting was formed at the place where MnS dissolved. TiO2 inclusion dissolved in the simulated COT corrosion solution after low-alloy steel matrix, and pitting was formed at the place where steel matrix dissolved. The corrosion tended to occur at the area where the curvature radius of inclusion is smaller. The size of round TiO2 inclusions had little influence on corrosion behavior in this certain environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Guedes Soares, Y. Garbatov, A. Zayed, G. Wang, Corros. Sci. 50 (2008) 3095–3106.

    Article  Google Scholar 

  2. K. Kashima, Y. Tanino, S. Kubo, A. Inami, H. Miyuki, in: NMRI (Japan)-Lloyd’s Register (Eds.), Shipbuilder Technology ISST 2007, The Japan Society of Naval Architects and Ocean Engineers and The Royal Institution of Naval Architects, Osaka, 2007, pp. 5–10.

  3. C. Guedes Soares, Y. Garbatov, A. Zayed, G. Wang, Corros. Sci. 51 (2009) 2014–2026.

    Article  Google Scholar 

  4. H. Shiomi, M. Kaneko, K. Kashima, H. Imamura, T. Koromi, in: TSCF (Eds. ), TSCF 2007 Shipbuilder Meeting, Busan, Korea, 2007, pp. 1–11.

    Google Scholar 

  5. R. Moaleji, A. R. Greig, Ocean Eng. 34 (2007) 103–121.

    Article  Google Scholar 

  6. S. Sakashita, A. Tatsumi, H. Imamura, H. Ikeda, in: NMRI (Japan)-Lloyd’s Register (Eds. ), Shipbuilder Technology ISST 2007, The Japan Society of Naval Architects and Ocean Engineers and The Royal Institution of Naval Architects, Osaka, 2007, pp. 1–5.

  7. S. Imai, K. Katoh, Y. Funatsu, M. Kaneko, T. Matsubara, H. Hirooka, H. Sato, in: NMRI (Japan)-Lloyd’s Register (Eds. ), Shipbuilder Technology ISST 2007, The Japan Society of Naval Architects and Ocean Engineers and The Royal Institution of Naval Architects, Osaka, 2007, pp. 11–20.

  8. Y. Inohara, T. Komori, K. Kyono, K. Ueda, S. Suzuki, H. Shiomi, in: NMRI (Japan)-Lloyd’s Register (Eds. ), Shipbuilder Technology ISST 2007, The Japan Society of Naval Architects and Ocean Engineers and The Royal Institution of Naval Architects, Osaka, 2007, pp. 33–36.

  9. W. Liu, X. H. Fan, S. F. Li, C. J. Shang, X. M. Wang, M. X. Lu, J. Univ. Sci. Technol. Beijing 33 (2011) 33–39.

    Google Scholar 

  10. J. M. Liang, D. Tang, H. B. Wu, L. D. Wang, J. Southeast Univ. Nat. Sci. 43 (2013) 152–157.

    Google Scholar 

  11. J. M. Liang, D. Tang, P. C. Zhang, H. B. Wu, H. Y. Mao, X. T. Liu, Adv. Mater. Res. 652–654 (2013) 916–922.

    Google Scholar 

  12. D. E. Williams, Y. Y. Zhu, J. Electrochem. Soc. 147 (2000) 1763–1766.

    Article  Google Scholar 

  13. J. O. Park, S. Matsch, H. Böhni, J. Electrochem. Soc. 149 (2002) B34–B39.

    Article  Google Scholar 

  14. M. P. Ryan, D. E. Williams, R. J. Chater, B. M. Hutton, D. S. McPhail, Nature 415 (2002) 770–774.

    Article  Google Scholar 

  15. M. Kaneko, T. Senuma, ISIJ Int. 45 (2005) 1331–1334.

    Article  Google Scholar 

  16. Y. Tsutsumi, A. Nishikata, T. Tsuru, Corros. Sci. 49 (2007) 1394–1407.

    Article  Google Scholar 

  17. P. Schmuki, H. Hildebrand, A. Friedrich, S. Virtanen, Corros. Sci. 47 (2005) 1239–1250.

    Article  Google Scholar 

  18. Z. J. Jia, C. W. Du, C. T. Li, Z. Yi, X. G. Li, Int. J. Miner. Metall. Mater. 18 (2011) 48–52.

    Article  Google Scholar 

  19. E. G. Webb, R. C. Alkire, J. Electrochem. Soc. 149 (2002) B272–B279.

    Article  Google Scholar 

  20. E. G. Webb, R. C. Alkire, J. Electrochem. Soc. 149 (2002) B280–B285.

    Article  Google Scholar 

  21. E. G. Webb, R. C. Alkire, J. Electrochem. Soc. 149 (2002) B286–B295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-bin Wu or Jin-ming Liang.

Additional information

Foundation Item: Item Sponsored by National Science and Technology Major Project of the Ministry of Science and Technology of China (2011ZX05016-004); National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2011BAE25B00)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Hb., Liang, Jm., Tang, D. et al. Influence of Inclusion on Corrosion Behavior of E36 Grade Low-Alloy Steel in Cargo Oil Tank Bottom Plate Environment. J. Iron Steel Res. Int. 21, 1016–1021 (2014). https://doi.org/10.1016/S1006-706X(14)60177-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60177-1

Key words

Navigation