Skip to main content
Log in

Effect of Nb on corrosion behavior of inner bottom plate of cargo oil tankers

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of Nb on the corrosion resistance of steels in simulating an oil-corrosion environment was investigated by means of microstructure observation, electrochemical test, dissolved Nb content measurement and Nb segregation observation. The results show that the microstructure of the experimental steels is mainly ferrite with a little pearlite. The dissolved Nb contents of the experimental steels are 0.0235 and 0.0458 wt.%, respectively, while the undissolved Nb content is nearly the same. In addition to enhancing mechanical properties of the steel, dissolved Nb improves the corrosion resistance by enriching Nb in the rust layer. Nb oxides in the rust layer cause a decrease in the corrosion rate due to a decrease in the anodic reaction kinetics. The segregation of Nb at the grain boundaries suppresses the corrosion. Moreover, Nb is enriched at the bottom of the corrosion pit and prevents any further corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Tscheliesnig, in: 12 A-PCNDT 2006, Auckland, 2006, pp. 178–183.

  2. D. Saurí, in: European Environment Agency (Ed.), Mapping the impacts of recent natural disasters and technological accidents in Europe, Office for Official Publications of the European Communities, Luxembourg, 2004, pp. 35–38.

  3. C. Guedes Soares, Y. Garbatov, A. Zayed, G. Wang, Corros. Sci. 50 (2008) 3095–3106.

    Article  Google Scholar 

  4. P. Tscheliesnig, in: 16th WCNDT, Montreal, 2004, pp. 1–8.

  5. S. Igi, Y. Inohara, T. Hirai, JFE Tech. Rep. (2005) No. 5, 17–23.

    Google Scholar 

  6. K. Katoh, S. Imai, D. Yasunaga, H. Miyuki, Y. Yamane, H. Ohyabu, Y. Kobayashi, M. Yoshikawa, Y. Tomita, Soc. Nav. Archit. Mar. Eng. Trans. 3 (2003) 1–11.

    Google Scholar 

  7. S. Sakashita, A. Tatsumi, H. Imamura, H. Ikeda, in: ISST, Osaka, 2007, pp. 1–4.

  8. S. Imai, K. Katoh, Y. Funatsu, M. Kaneko, T. Matsubara, H. Hirooka, H. Sato, in: ISST, Osaka, 2007, pp. 11–20.

  9. H. Shiomi, M. Kaneko, K. Kashima, H. Imamura, T. Komori, in: Proceeding of TSCF 2007 Shipbuilders Meeting, 2007, pp. 1–8.

  10. K. Kashima, Y. Tanino, S. Kubo, A. Inami, H. Miyuki, in: ISST, Osaka, 2007, pp. 5–10.

  11. Z. Peng, J.M. Liang, F. Zhang, H.B. Wu, D. Tang, J. Iron Steel Res. Int. 22 (2015) 630–637.

    Article  Google Scholar 

  12. H.B. Wu, J.M. Liang, D. Tang, X.T. Liu, P.C. Zhang, Y.J. Yue, J. Iron Steel Res. Int. 21 (2014) 1016–1021.

    Article  Google Scholar 

  13. S. Hang, X.B. Luo, C.F. Yang, C. Feng, L. Hao, J. Iron Steel Res. Int. 21 (2014) 619–624.

    Article  Google Scholar 

  14. M. Piette, E. Dubrulle-Prat, C. Perdrix, V. Schwinn, A. Streisselberger, K. Hulka, Ironmak. Steelmak. 28 (2013) 175–179.

    Article  Google Scholar 

  15. G. Minick, Mater. Perform. 14 (1975) 41–43.

    Google Scholar 

  16. B. Piekarski, Mater. Charact. 47 (2001) 181–186.

    Article  Google Scholar 

  17. C. Sousa, S. Kuri, Mater. Lett. 25 (1995) 57–60.

    Article  Google Scholar 

  18. Y.B. Cao, F.R. Xiao, G.Y. Qiao, X.B. Zhang, B. Liao, Mater. Sci. Eng. A 530 (2011) 277–284.

    Article  Google Scholar 

  19. Y.B. Cao, F.R. Xiao, G.Y. Qiao, C.J. Huang, X.B. Zhang, Z.X. Wu, B. Liao, Mater. Sci. Eng. A 552 (2012) 502–513.

    Article  Google Scholar 

  20. J. Stewart, D. Williams, Corros. Sci. 33 (1992) 457–474.

    Article  Google Scholar 

  21. T. Suter, H. Böhni, Electrochim. Acta 42 (1997) 3275–3280.

    Article  Google Scholar 

  22. J. Li, J. Wu, Z. Wang, S. Zhang, X. Wu, Y. Huang, X. Li, Int. J. Hydrogen Energy 42 (2017) 22175–22184.

    Article  Google Scholar 

  23. Q. Zhao, Int. J. Electrochem. Sci. (2017) 7989–7996.

    Article  Google Scholar 

  24. N.D. Nam, J.G. Kim, Corros. Sci. 52 (2010) 3377–3384.

    Article  Google Scholar 

  25. P.J. Felfer, C.R. Killmore, J.G. Williams, K.R. Carpenter, S.P. Ringer, J.M. Cairney, Acta Mater. 60 (2012) 5049–5055.

    Article  Google Scholar 

  26. N. Maruyama, G.D.W. Smith, A. Cerezo, Mater. Sci. Eng. A 353 (2003) 126–132.

    Article  Google Scholar 

  27. N. Maruyama, G.D.W. Smith, Mater. Sci. Forum 467–470 (2004) 949–956.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2017YFB0304700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-min Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Xy., Tian, L., Zhou, Y. et al. Effect of Nb on corrosion behavior of inner bottom plate of cargo oil tankers. J. Iron Steel Res. Int. 26, 611–620 (2019). https://doi.org/10.1007/s42243-018-0180-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0180-6

Keywords

Navigation