Skip to main content
Log in

Effects of Welding Procedure on Corrosion Resistance and Hydrogen Embrittlement of Supermartensitic Stainless Steel Deposits

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effects of shielding gas and post weld heat treatment on the pitting resistance, stress corrosion cracking and hydrogen embrittlement of supermartensitic stainless steel deposits were studied. Two all-weld-metal test coupons were prepared using a metal-cored wire under Ar+5% He and Ar+18% CO2 gas shielding mixtures. Solubilizing and solubilizing plus double tempering heat treatments were done with the objective of achieving different microstructural results. The samples welded under Ar+5% He showed higher pitting corrosion resistance, for all post weld heat treatments, than those welded under Ar+18% CO2. The different post weld heat treatments generated higher susceptibility to this corrosion mechanism. None of the samples presented signs of stress corrosion cracking, but in those subjected to the heat treatment, grain boundary selective attack was observed, on the surfaces of all the samples studied. The samples with highest hardness were more susceptible to hydrogen damage, thereby leading to reduced tensile strength on this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amaya H, Kondo K, Taniyama A, et al. Stress Corrosion Cracking Sensitivity of Super Martensitic Stainless Steel in High Chloride Concentration Environment [C] // Corrosion 2004. Houston: NACE International, 2004: 04124.

    Google Scholar 

  2. Van der Winden H, Toussaint P, Coudreuse L. Past, Present and Future of Weldable Supermartensitic Alloys [C] // Supermartensitic 2002. Brussels: Stainless Steel Word, 2002: 9.

    Google Scholar 

  3. Bilmes P, Llorente C, Solari M. Role of the Retained Austenite on the Mechanical Properties of 13Cr-4NiMo Weld Metals [C] // The 20th ASM Heat Treating Society. Missouri: ASM, 2000: 556.

    Google Scholar 

  4. Karlsson L, Rigdal S, Bruins W, et al. Efficient Welding of Supermartensitic Stainless Steels With Matching Composition Consumables [C] // Stainless Steel Word. The Hague: Stainless Steel Word, 1999: 341.

    Google Scholar 

  5. Srinivasan P, Sharkawy S, Dietzel W. Hydrogen Assisted Stress-Cracking Behavior of Electron Beam Welded Supermartensitic Stainless Steel Weldments [J]. Materials Science and Engineering, 2004, 385A(1/2): 6.

    Article  Google Scholar 

  6. Zappa S, Svoboda H, Ramini M, et al. Improving Supermartensitic Stainless Steel Weld Metal Toughness [J]. Welding Journal, 2012, 91(3): 83s.

    Google Scholar 

  7. Bilmes P, Solari M, Llorente C. Characteristics and Effect of Austenite Resulting From Tempering of 13 Cr-NiMo Martensitic Steel Weld Metals [J]. Materials Characterization, 2001, 46(4): 285.

    Article  Google Scholar 

  8. Bilmes P. Role of the Austenite on the Mechanical Properties of Soft Martensitic Stainless Steels Weld Metals [D]. La Plata: Universidad Nacional de La Plata, 2000.

    Google Scholar 

  9. Aquino J, Rovere C, Kuri S. Localized Corrosion Susceptibility of Supermartensitic Stainless Steel in Welded Joints [J]. Corrosion Science, 2007, 51(10): 2323.

    Google Scholar 

  10. Amaya H, Taniyama A, Ogawa K. Intergranular Stress Corrosion Cracking Susceptibility and Precipitation Behaviour on Grain Boundary by Post Weld Heat Treatment of Super Martensitic Stainless Steels [C] // Corrosion 2008. Houston: NACE International, 2008: 08100.

    Google Scholar 

  11. Hashizume S, Nakayama T, Sakairi M, et al. Electrochemical Behavior of Low C-13% Cr Weld Joints by Using Solution Flow Type Micro-droplet Cell [C] // Corrosion 2008. Houston: NACE International, 2008: 08102.

    Google Scholar 

  12. Miyata Y, Kimura M. Effects of Thermal Cycle Conditions on Intergranular Stress Corrosion Cracking in Sweet Environment for Supermartensitic Stainless Steel [C] // Corrosion 2005. Houston: NACE International, 2005: 05095.

    Google Scholar 

  13. Zappa S, Svoboda H, Ramini M, et al. Effect of Shielding Gas on the Properties of Supermartensitic Stainless Steel All Weld Metal [C] // CONAMET-SAM 2006. Santiago de Chile: CONAMET-SAM, 2006.

    Google Scholar 

  14. Lippold J, Kotecki D. Welding Metallurgy and Weldability of Stainless Steels [M]. New Jersey: John Wiley and Sons, 2005.

    Google Scholar 

  15. Kimura M, Miyata Y, Toyooka T, et al. Effect of Test Method on SSC Performance of Modified 13Cr Steel [C] // Corrosion 1998. Houston: NACE International, 1998: 98114.

    Google Scholar 

  16. Hara T, Asahi H. Conditions Under Which Cracks Occur in Modified 13% Chromium Steel in Wet Hydrogen Sulfide Environments [C] // Corrosion 2000. Houston: NACE International, 2000: 00050533.

    Google Scholar 

  17. ANSI/AWS A5.22—95, Specification for Stainless Steel Electrodes for Flux Cored Arc Welding and Stainless Steel Flux Cored Rods for Gas Tungsten Arc Welding [S]. Miami: American Welding Society, 1995.

    Google Scholar 

  18. ANSIB31. 3—96, Chemical Plant and Petroleum Refinery Piping [S]. Miami: American National Standards Institute, 1996.

    Google Scholar 

  19. ASTM E562—99, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count [S]. Miami, ASTM International, 1999.

    Google Scholar 

  20. Cullity B, Stock S. Elements of X Ray Diffraction [M]. 3rd ed. New Jersey: Prentice Hall, 2001.

    Google Scholar 

  21. Bilmes P, Llorente C, Desimone J, et al. Microstructures and Properties of Martensitic Stainless Steels of 13% Cr-4% NiMo Weld Metals FCAW [C] // II Encuentro de Ingeniería de Materiales. La Habana: 1998: 252.

    Google Scholar 

  22. Zappa S, Svoboda H, Ramini M, et al. Effect of Post Weld Heat Treatment on the Properties of a Supermartensitic Stainless Steel Welded With a Tubular Metal-Cored Wire [J]. Soldagem e Inspecão, 2007, 12(2): 115.

    Google Scholar 

  23. Baroux B, Marcus P. Corrosion Mechanism in Theory and Practice [M]. 2nd ed. New York: [s. n.], 2002.

    Google Scholar 

  24. Shibata T, Takeyama T. Stochastic Theory of Pitting Corrosion [J]. Corrosion, 1977, 33(7): 243.

    Article  Google Scholar 

  25. Bilmes P, Llorente C, Huamán L, et al. Microstructure and Pitting Corrosion of 13CrNiMo Weld Metals [J]. Corrosion Science, 2006, 48(10): 3261.

    Article  Google Scholar 

  26. Shibata T. Uhlig’s Corrosion Handbook [M]. 2nd ed. New York: [s. n.], 2000.

    Google Scholar 

  27. NACE TM0177—05. Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments [S]. Miami: NACE International, 2005.

    Google Scholar 

  28. EFC 17. Corrosion Resistant Alloys for Oil and Gas Production Guidance on General Requirements and Test Methods for H2S Service [M]. 2nd ed. London: Maney Publishing, 1996.

    Google Scholar 

  29. Srinivasan P, Sharkawy S, Dietzel W. Environmental Cracking Behavior of Submerged Arc-Welded Supermartensitic Stainless Steel Weldments [J]. Journal of Materials Engineering and Performance, 2004, 13(2): 232.

    Article  Google Scholar 

  30. Hazarabedian A, Bilmes P, Llorente C, et al. Effect of Post Weld Heat Treatments on the Damage Hydrogen Resistance of “Soft Martensitic” Stainless Steels Weld Metals [C] // SAM-CONAMET 2003. San Carlos de Bariloche: SAM-CONAMET, 2003: 242.

    Google Scholar 

  31. Bohni H. Uhlig’s Corrosion Handbook [M]. 2nd ed. Zurich: [s. n.], 2000.

    Google Scholar 

  32. Kimura M, Miyata Y, Toyooka T. Effect of Retained Austenite on Corrosion Performance for Modified 13% Cr Steel Pipe [J]. Corrosion, 2000, 57(5): 01050433.

    Google Scholar 

  33. Hara T, Asahi H. Effect of Delta-Ferrite on Sulfide Stress Cracking in a Low Carbon 13 mass% Chromium Steel [J]. ISIJ International, 2000, 40(11): 1134.

    Article  Google Scholar 

  34. Woollin P. Post Weld Heat Treatment to Avoid Intergranular Stress Corrosion Cracking of Supermartensitic Stainless Steels [J]. Welding in the Word, 2005, 51(9/10): 31.

    Google Scholar 

  35. Beghini M, Benamati G, Bertini L, et al. Effect of Hydrogen on Tensile Properties of Martensitic Steel for Fusion Application [J]. Journal of Nuclear Materials, 1998, 258–263: 1295.

    Article  Google Scholar 

  36. Gesnouin C, Hazarabedian A, Bruzzoni P, et al. Effect of Post-Weld Heat Treatment on the Microstructure and Hydrogen Permeation of 13CrNiMo Steels [J]. Corrosion Science, 2004, 46(7): 1633.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zappa Sebastián.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebastián, Z., Estela, S. & Hernán, S. Effects of Welding Procedure on Corrosion Resistance and Hydrogen Embrittlement of Supermartensitic Stainless Steel Deposits. J. Iron Steel Res. Int. 20, 124–132 (2013). https://doi.org/10.1016/S1006-706X(13)60225-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(13)60225-3

Key words

Navigation